Автоматическое переключение на резервный источник питания - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Автоматическое переключение на резервный источник питания

Автоматическое включение резервного питания (АВР) в распределительных сетях

Автоматическое включение резерва (АВР) предназначено для переключения потребителей с поврежденного источника питания на исправный, резервный. В системах сельского электроснабжения устройства АВР применяют на двухтрансформаторных подстанциях 35 – 110/10 кВ (местные АВР) и на линиях 10 кВ с двусторонним питанием, работающих в разомкнутом режиме (сетевые АВР).

В связи с появлением потребителей первой категории по надежности электроснабжения (животноводческие комплексы) начинают внедрять устройства АВР на ТП-10/0,38 кВ, на линиях 0,38 кВ и на резервных дизельных электростанциях.

К схемам АВР предъявляются следующие основные требования:

• АВР должно обеспечиваться при непредусмотренном прекращении электроснабжения но любой причине и при наличии напряжения на резервном источнике питания;

• АВР должно осуществляться с минимально возможным временем действия;

• АВР должно быть однократным;

• АВР должно обеспечивать быстрое отключение резервного источника при включении на устойчивое к.з., для этого рекомендуется выполнять ускорение защиты после АВР (аналогично тому, как это делается после АПВ);

• в схеме АВР должен быть предусмотрен контроль исправности цепи включения резервного оборудования.

Для пуска АВР при исчезновении напряжения основного источника используется реле минимального напряжения . В некоторых случаях роль пускового органа выполняет реле времени с возвращающимся якорем (в нормальном режиме реле времени находится постоянно под напряжением и якорь притянут).

Уставка срабатывания этих реле обычно, если не имеется конкретных данных, выбирается из условия

Время срабатывания пускового органа устройства АВР (tср.АВР) выбирается по следующим условиям: • по отстройке от времени срабатывания тех защит, в зоне действия которых повреждения могут вызвать уменьшение напряжения ниже принятого по условию

где tс.з — наибольшее время срабатывания указанных защит;

Δt — ступень селективности, принимаемая равной 0,6 с при использовании реле времени со шкалой до 9 с и равной 1,5…2 с со шкалой до 20 с;

• по согласованию действия АВР с другими устройствами автоматики (например, АПВ линии, по которой осуществляется подача энергии от основного источника питания)

где tс.з.л — наибольшее время действия защиты линии (элемента системы электроснабжения), передающей энергию потребителям, для которых осуществляется АВР;

t1АПВ — время цикла неуспешного АПВ этой линии;

tзап — запас по времени, принимаемый равным 2 – 3,5 с.

В сельских электрических сетях применяются сетевые АВР , которые обеспечивают резервирование потребителей, подключенных к линиям с двусторонним питанием, работающих в разомкнутом (условно-замкнутом) режиме (рис. 1, а).

Сетевые АВР представляют собой комплекс аппаратов, в который входят:

• само устройство АВР, переключающее питание сети на резервный источник путем включения выключателя пункта АВР (3В, рис. 1), который отключен в нормальном режиме работы схемы;

• устройства, обеспечивающие при необходимости автоматическую перестройку релейной защиты перед изменением режима работы сети при АВР;

• устройство делительной автоматики минимального напряжения (действует па отключение 1В и 5В, рис. 1,а), которое предотвращает подачу напряжения от резервного источника на поврежденный рабочий источник питания (на рабочую линию, трансформатор и т. п.), а также на некоторые другие устройства.

Рис. 1 Схема сетевого АВР для сельских сетей 10 кВ (на выключателе с пружинным приводом): a — поясняющая первичная схема сети 10 кВ; б — схема цепи напряжения пускового органа АВР; в — схема АВР и управления аыключателя 3 (пункта АВР).

На рисунке 1, в показана схема сетевого АВР для выключателей с пружинным приводом, наиболее распространенным в сельских сетях 10 кВ. На пункте АВР (рис. 1,а) установлена ячейка (шкаф) КРУН с выключателем 3В, оборудованным сетевым АВР и релейной защитой.

Действие пускового органа АВР обеспечивается от трансформаторов напряжения ТН1 и ТН2 (по два или по одному ТН с каждой стороны), которые являются источниками оперативного тока для всех устройств пункта АВР. При этом питание шинок управления 1ШУ и 2ШУ (рис. 1,в) осуществляется либо от ТН1, либо от ТН2 с автоматическим переключением на ТН неповрежденной линии.

При исчезновении питания, например со стороны подстанции А, срабатывают реле напряжения 1РН, 2РН. При наличии напряжения со стороны подстанции Б запускается реле времени 1РВ и через заданное время замыкает контакт 1РВ в цепи электромагнита включения ЭВ выключателя 3В.

Если пружины привода заведены (контакт КГП1 замкнут), выключатель включается. При успешном АВР через замкнувшийся вспомогательный контакт 3ВЗ включается двигатель и заводит пружины привода. При неуспешном АВР (включение на к.з. с последующим отключением от защиты) контакт ЗВЗ остается разомкнутым и пружины не заведены (продолжительность полного завода пружин 6. 20 с). Этим обеспечивается однократность АВР.

В данном случае для подготовки привода к включению необходимо вручную перевести устройство 2ОУ в положение 2—3. При неисправностях в цепях TН1 или ТН2 отключается соответствующий автомат АВ н своим вспомогательным контактом АВ1 или АВ2 выводит из действия устройство АВР для работы в сторону поврежденного ТН.

Если уставки tср.АВР при исчезновении напряжения со стороны источников А и Б существенно отличаются, то устанавливают второе реле 2РВ (на схеме не показано), так что реле 1РВ запускается по цепи 1PH, 2РН, АВ1, а реле 2РВ — по цепи 3РН, 4РН, АВ2.

Работу схемы АВР трансформаторов проверяют на стенде (рис.2).

Рис. 2. Схема устройства АВР (включение секционного выключателя) на двухтрансформаторной подстанции.

Принципиальная схема АВР, показанная на рисунке 2, позволяет при помощи секционного выключателя СВ автоматически подавать питание на шины секции I или II при аварийном отключении трансформаторов Т1 или Т2.

Рассмотрим работу схемы при включении резервного питания на шины секции I.

Потребители секции I нормально питаются от трансформатора T1, а автоматическое резервирование их питания осуществляется включением СВ.

Автоматическое резервное питание подается при исчезновении напряжения на шинах секции I вследствие:

• отключения источника питания или линии электропередачи со стороны T1;

• короткого замыкания внутри трансформатора и на шинах секции I;

• непреднамеренного отключения трансформатора T1.

Схема АВР работает только при замкнутых контактах переключателя П. Обмотка реле однократного включения устройства АВР (РОВ) находится под напряжением и его контакт замкнут до тех пор, пока включен выключатель 1В1.

При исчезновении напряжения на шинах секции I реле минимального напряжения замыкает свои размыкающие контакты. Через его замкнутые контакты реле времени 1РВ получает питание и через определенную выдержку времени подает импульс на отключение трансформатора T1 (выключателей 1В и 1В1).

Обычно реле времени действует на промежуточное реле, которое своими контактами включает оперативные цепи выключателя. После отключения выключателей обмотка РОВ обесточивается, но возврат его контактов в исходное положение происходит с некоторой выдержкой времени. Время возврата немного больше времени включения выключателя СВ. Поэтому импульс на включение СВ успевает пройти через контакт РОВ и включить его, благодаря чему шины секции I получают питание от трансформатора Т2. После размыкания контакта РОВ цепь импульса на включение выключателя разрывается, чем обеспечивается однократность действия устройства АВР.

Для исключения ложных действий устройств АВР при сгорании предохранителей в цепи трансформатора напряжения ТН ставят два реле минимального напряжения РН с последовательным соединением их контактов. Кроме того, можно включить последовательно еще одно реле напряжения, которое питается от резервного источника и разрешает действовать устройству АВР при исчезновении напряжения на основной секции для данных потребителей только при наличии напряжения на шипах резервного питания.

3 схемы автоматического ввода резерва для дома. Ввод 1 — Ввод 2 — Генератор.

При сборке схемы автоматического ввода резерва можно выбрать три варианта. Два более простых и один посложнее.

Рассмотрим каждый из вариантов схемы поподробнее.

Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов:

    нормально разомкнутым
    нормально замкнутым

Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку.

Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.



Вот самая простая схема АВР:

Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается.

SF1 и SF2 в схеме – это однополюсные автоматические выключатели.

Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:

Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2.

Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.

Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты.

При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:

    без разрыва ноля
    с разрывом нулевого провода

Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль.

Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.

Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.

За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора.

Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.

Трехфазная схема практически аналогична однофазной.

Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.

Вторая схема немного посложнее. В ней используется уже два магнитных пускателя.

Допустим, у вас есть два трехфазных ввода и один потребитель. В схеме применены магнитные пускатели с 4-мя контактами:

    3 нормально разомкнутые
    1 нормально замкнутый КМ1
Читайте также:  Выбор автоматического выключателя по мощности таблица

Катушка пускателя КМ1 подключается через фазу L3 от первого ввода и через нормально замкнутый контакт КМ2. Таким образом, когда вы подаете питание на ввод №1, катушка первого пускателя замыкается и вся нагрузка подключается к источнику напряжения №1.

Второй контактор при этом отключен, так как нормально замкнутый разъем КМ1, будет в этот момент размокнут, и питание на катушку второго пускателя поступать не будет. При исчезновении напряжения на первом вводе, отпадает контактор-1 и включается контактор-2. Потребитель остается со светом.

Самый главный плюс этих схем – их простота. А минусом является то, что подобные сборки называть схемами автоматизации можно с очень большой натяжкой.

Стоит лишь исчезнуть напряжению на той фазе, которая питает катушку включения и вы легко можете получить встречное КЗ.

Можно конечно усовершенствовать всю систему, выбрав катушку контактора не на 220В, а на 380В. В этом случае будет осуществлен контроль уже по двум фазам.

Но на 100% вы все равно себя не обезопасите. А если учесть момент возможного залипания контактов, то тем более.

Кроме того, вы никак не будете защищены от слишком низкого напряжения. Пускатель №1 может отключиться, только если U на входе будет ниже 110В. Во всех остальных случаях, ваше оборудование будет продолжать получать не качественную электроэнергию, хотя казалось бы, рядом и есть второй исправный ввод.

Чтобы повысить надежность, придется усложнять схему и включать в нее дополнительные элементы:

    реле напряжения
    реле контроля фаз и т.п.

Поэтому в последнее время, для сборки схем АВР, все чаще стали применяться специальные реле или контроллеры – ”мозги” всего устройства. Они могут быть разных производителей и выполнять функцию не только включения резервного питания от одного источника.

Вдруг перед вами стоит более сложная задача. Например, нужно чтобы схема управляла сразу двумя вводами и вдобавок еще генератором. Причем генератор должен запускаться автоматически.

Алгоритм работы здесь следующий:

1.При неисправном вводе №1 происходит автоматическое переключение на ввод №2.
2.При отсутствии напряжения на обоих вводах осуществляется запуск генератора и переключение всей нагрузки на него.

Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика.

В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.

Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:

Автоматическое включение резервного питания (АВР) в распределительных сетях

Автоматическое включение резерва (АВР) предназначено для переключения потребителей с поврежденного источника питания на исправный, резервный. В системах сельского электроснабжения устройства АВР применяют на двухтрансформаторных подстанциях 35 – 110/10 кВ (местные АВР) и на линиях 10 кВ с двусторонним питанием, работающих в разомкнутом режиме (сетевые АВР).

В связи с появлением потребителей первой категории по надежности электроснабжения (животноводческие комплексы) начинают внедрять устройства АВР на ТП-10/0,38 кВ, на линиях 0,38 кВ и на резервных дизельных электростанциях.

К схемам АВР предъявляются следующие основные требования:

• АВР должно обеспечиваться при непредусмотренном прекращении электроснабжения но любой причине и при наличии напряжения на резервном источнике питания;

• АВР должно осуществляться с минимально возможным временем действия;

• АВР должно быть однократным;

• АВР должно обеспечивать быстрое отключение резервного источника при включении на устойчивое к.з., для этого рекомендуется выполнять ускорение защиты после АВР (аналогично тому, как это делается после АПВ);

• в схеме АВР должен быть предусмотрен контроль исправности цепи включения резервного оборудования.

Для пуска АВР при исчезновении напряжения основного источника используется реле минимального напряжения . В некоторых случаях роль пускового органа выполняет реле времени с возвращающимся якорем (в нормальном режиме реле времени находится постоянно под напряжением и якорь притянут).

Уставка срабатывания этих реле обычно, если не имеется конкретных данных, выбирается из условия

Время срабатывания пускового органа устройства АВР (tср.АВР) выбирается по следующим условиям: • по отстройке от времени срабатывания тех защит, в зоне действия которых повреждения могут вызвать уменьшение напряжения ниже принятого по условию

где tс.з — наибольшее время срабатывания указанных защит;

Δt — ступень селективности, принимаемая равной 0,6 с при использовании реле времени со шкалой до 9 с и равной 1,5…2 с со шкалой до 20 с;

• по согласованию действия АВР с другими устройствами автоматики (например, АПВ линии, по которой осуществляется подача энергии от основного источника питания)

где tс.з.л — наибольшее время действия защиты линии (элемента системы электроснабжения), передающей энергию потребителям, для которых осуществляется АВР;

t1АПВ — время цикла неуспешного АПВ этой линии;

tзап — запас по времени, принимаемый равным 2 – 3,5 с.

В сельских электрических сетях применяются сетевые АВР , которые обеспечивают резервирование потребителей, подключенных к линиям с двусторонним питанием, работающих в разомкнутом (условно-замкнутом) режиме (рис. 1, а).

Сетевые АВР представляют собой комплекс аппаратов, в который входят:

• само устройство АВР, переключающее питание сети на резервный источник путем включения выключателя пункта АВР (3В, рис. 1), который отключен в нормальном режиме работы схемы;

• устройства, обеспечивающие при необходимости автоматическую перестройку релейной защиты перед изменением режима работы сети при АВР;

• устройство делительной автоматики минимального напряжения (действует па отключение 1В и 5В, рис. 1,а), которое предотвращает подачу напряжения от резервного источника на поврежденный рабочий источник питания (на рабочую линию, трансформатор и т. п.), а также на некоторые другие устройства.

Рис. 1 Схема сетевого АВР для сельских сетей 10 кВ (на выключателе с пружинным приводом): a — поясняющая первичная схема сети 10 кВ; б — схема цепи напряжения пускового органа АВР; в — схема АВР и управления аыключателя 3 (пункта АВР).

На рисунке 1, в показана схема сетевого АВР для выключателей с пружинным приводом, наиболее распространенным в сельских сетях 10 кВ. На пункте АВР (рис. 1,а) установлена ячейка (шкаф) КРУН с выключателем 3В, оборудованным сетевым АВР и релейной защитой.

Действие пускового органа АВР обеспечивается от трансформаторов напряжения ТН1 и ТН2 (по два или по одному ТН с каждой стороны), которые являются источниками оперативного тока для всех устройств пункта АВР. При этом питание шинок управления 1ШУ и 2ШУ (рис. 1,в) осуществляется либо от ТН1, либо от ТН2 с автоматическим переключением на ТН неповрежденной линии.

При исчезновении питания, например со стороны подстанции А, срабатывают реле напряжения 1РН, 2РН. При наличии напряжения со стороны подстанции Б запускается реле времени 1РВ и через заданное время замыкает контакт 1РВ в цепи электромагнита включения ЭВ выключателя 3В.

Если пружины привода заведены (контакт КГП1 замкнут), выключатель включается. При успешном АВР через замкнувшийся вспомогательный контакт 3ВЗ включается двигатель и заводит пружины привода. При неуспешном АВР (включение на к.з. с последующим отключением от защиты) контакт ЗВЗ остается разомкнутым и пружины не заведены (продолжительность полного завода пружин 6. 20 с). Этим обеспечивается однократность АВР.

В данном случае для подготовки привода к включению необходимо вручную перевести устройство 2ОУ в положение 2—3. При неисправностях в цепях TН1 или ТН2 отключается соответствующий автомат АВ н своим вспомогательным контактом АВ1 или АВ2 выводит из действия устройство АВР для работы в сторону поврежденного ТН.

Если уставки tср.АВР при исчезновении напряжения со стороны источников А и Б существенно отличаются, то устанавливают второе реле 2РВ (на схеме не показано), так что реле 1РВ запускается по цепи 1PH, 2РН, АВ1, а реле 2РВ — по цепи 3РН, 4РН, АВ2.

Работу схемы АВР трансформаторов проверяют на стенде (рис.2).

Рис. 2. Схема устройства АВР (включение секционного выключателя) на двухтрансформаторной подстанции.

Принципиальная схема АВР, показанная на рисунке 2, позволяет при помощи секционного выключателя СВ автоматически подавать питание на шины секции I или II при аварийном отключении трансформаторов Т1 или Т2.

Рассмотрим работу схемы при включении резервного питания на шины секции I.

Потребители секции I нормально питаются от трансформатора T1, а автоматическое резервирование их питания осуществляется включением СВ.

Автоматическое резервное питание подается при исчезновении напряжения на шинах секции I вследствие:

• отключения источника питания или линии электропередачи со стороны T1;

• короткого замыкания внутри трансформатора и на шинах секции I;

• непреднамеренного отключения трансформатора T1.

Схема АВР работает только при замкнутых контактах переключателя П. Обмотка реле однократного включения устройства АВР (РОВ) находится под напряжением и его контакт замкнут до тех пор, пока включен выключатель 1В1.

При исчезновении напряжения на шинах секции I реле минимального напряжения замыкает свои размыкающие контакты. Через его замкнутые контакты реле времени 1РВ получает питание и через определенную выдержку времени подает импульс на отключение трансформатора T1 (выключателей 1В и 1В1).

Обычно реле времени действует на промежуточное реле, которое своими контактами включает оперативные цепи выключателя. После отключения выключателей обмотка РОВ обесточивается, но возврат его контактов в исходное положение происходит с некоторой выдержкой времени. Время возврата немного больше времени включения выключателя СВ. Поэтому импульс на включение СВ успевает пройти через контакт РОВ и включить его, благодаря чему шины секции I получают питание от трансформатора Т2. После размыкания контакта РОВ цепь импульса на включение выключателя разрывается, чем обеспечивается однократность действия устройства АВР.

Для исключения ложных действий устройств АВР при сгорании предохранителей в цепи трансформатора напряжения ТН ставят два реле минимального напряжения РН с последовательным соединением их контактов. Кроме того, можно включить последовательно еще одно реле напряжения, которое питается от резервного источника и разрешает действовать устройству АВР при исчезновении напряжения на основной секции для данных потребителей только при наличии напряжения на шипах резервного питания.

Автоматический ввод резерва (АВР). Типы и характеристики.

Автоматический ввод резерва

Автоматический ввод резерва — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

Читайте также:  Соединительная шина гребенка для автоматов

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет Автоматический ввод резерва.

Автоматический ввод резерва может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

Автоматический ввод резерва

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Основные требования, предъявляемые к устройствам при построении системы гарантированного электроснабжения

  1. Как известно (см. ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.
  2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.
  3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.
  4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.
  5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.
  6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований

Тиристорные (электронные) АВР

Статический переключатель нагрузки — (англ.: LTM — Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества:

Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки:

Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах

АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз.

В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии.

При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества:

Дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки:

Отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки:

Более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества:

Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства рубильника.

Недостатки:

Относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

Автоматический ввод резерва и дополнительные функции

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:

  • Целесообразно использовать автоматический ввод резерва электромеханического типа, которые могут быть выполнены на контакторах, управляемых автоматических выключателях или управляемых переключателях с электроприводом
  • Схема АВР должна предусматривать регулировки задержек переключения, порогов срабатывания во всем диапазоне входных напряжений
  • Желательно наличие механической блокировки, исключающей возможность замыкания двух входов друг на друга
  • При использовании в качестве резервного источника дизель-электрической станции схема АВР должна содержать необходимые элементы для управления ее работой (автоматический пуск и останов ДЭС, возможность регулировки различных временных параметров, в том числе задержки обратного переключения на сеть, времени работы ДЭС на холостом ходу для охлаждения и т.п.)

Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:

  • Трехвходовая схема может быть реализована путем последовательного соединения двух двухвходовых АВР, при этом каждый из этих аппаратов должен быть выполнен с учетом требований, указанных выше
  • Автоматический ввод резерва на контакторах и управляемых автоматических выключателях может быть реализован как трехвходовый (что уменьшит суммарную стоимость оборудования на 20-30% за счет меньшего числа коммутирующих элементов), однако при этом невозможно обеспечить полноценную механическую блокировку между тремя входами

Практические рекомендации, которые подтверждены в различных проектах

Система гарантированного электроснабжения мощностью до 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы «ППФ БИП-сервис», представляющие собой АВР контакторного типа. Эти аппараты имеют:

  • механическую и электронную блокировку контакторов
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки
  • регулировку диапазона контролируемых напряжений
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов
  • индикацию режима работы и состояния входов
  • регулировку задержки времени переключения

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

Система гарантированного электроснабжения мощностью более 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП, которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI. Также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС

Система гарантированного электроснабжения

Схемы трехвходовых АВР могут быть экономически более привлекательны. В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов.

В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов. А между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК.

Схема трехвходового коммутатора серии АКП, как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

Читайте также:  Как соединить автоматы в щитке пошагово

Типовые схемы подключения АВР – определение, принцип работы

Когда электричество исчезает даже на несколько минут, предприятия могут понести колоссальные убытки. А для больниц такая ситуация просто опасна. В большинстве объектах необходимо обеспечивать бесперебойное электроснабжение. Для этого его следует подключить к нескольким источникам электроэнергии. Специалисты при таком подходе используют АВР.

Что такое АВР и его назначение

Автоматический ввод резерва или АВР – это система, относящаяся к электрощитовым вводно-коммутационным распределительным устройствам. Основной целью АВР является быстрое подключение нагрузки на резервное оборудование. Такое подключение необходимо, когда появляются проблемы с подачей электричества от главного источника электроэнергии. Система следит за напряжением и током нагрузки и таким образом обеспечивает автоматическое переключение на функционирование в аварийном режиме.

АВР необходимо, если имеется запасной источник питания (дополнительная линия или еще один трансформатор). Если при аварийной ситуации будет отключен первый источник, вся работа перейдет на запасной. Использование АВР позволит избежать неприятностей, вызванных перебоями подачи электроэнергии.

Требования к АВР

Основные требования к системам АВР заключаются в следующем:

  • Она должна иметь высокую скорость восстановления подачи электроэнергии.
  • В случае, когда основная линия перестает работать, установка должна обеспечить подачу электроэнергии потребителю от запасного источника.
  • Действие осуществляется один раз. Нельзя допускать несколько включений и отключений нагрузки, например, из-за короткого замыкания.
  • Выключатель основного питания должен включаться с помощью автоматики системы автоматического ввода резерва. До тех пор, пока не будет подано запасное электропитание.
  • Система АВР должна производить контроль корректного функционирования цепи управления резервным оборудованием.

Принцип работы автоматического ввода резерва

Основой работы АВР является контроль напряжения в цепи. Контроль может осуществляться как при помощи любых реле, так и при помощи микропроцессорных блоков управления.

Справка! Реле контроля напряжения (также называют вольт контроллер) отслеживает состояние электрического потенциала. В случае перенапряжения в сети вольт контроллер мгновенно обесточит сеть.

Контактная группа, контролирующая наличие электроэнергии, играет основную роль в системе АВР. В нашем случае это реле. Когда напряжение пропадает, управляющий механизм получает сигнал и переключается на питание генератора. Когда основная сеть начинает работать штатно, этот же механизм переключает питание обратно.

Основные варианты логики функционирования АВР

Система АВР с приоритетом первого ввода

Суть работы системы АВР этого типа заключается в том, что нагрузка изначально подключается к источнику электроэнергии № 1. Когда случается перегрузка, короткое замыкание, обрыв фазы или другая аварийная ситуация, нагрузка переходит на запасной источник. Когда подача электричества на первом восстановлена до нормальных параметров, нагрузка автоматически переключается обратно.

Система АВР с приоритетом второго ввода

Логика работы та же, что и у предыдущего типа системы. Разница в том, что нагрузку подключают к вводу 2. В случае аварии напряжение переходит на ввод 1. После того, как напряжение на втором источнике будет восстановлено, напряжение автоматом переключится на него.

Система АВР с ручным выбором приоритета

Схема системы АВР с ручным выбором приоритета является более сложной, чем рассмотренные выше. В этом случае на системе АВР будет установлен переключатель, с помощью которого можно регулировать выбор приоритета АВР.

Система АВР без приоритета

Эта АВР функционирует от любого источника питания. В случае, когда напряжение идет на ввод 1, а на нём происходит аварийная ситуация, нагрузка переходит на ввод 2. После стабилизации работы первого ввода механизм продолжает работать на вводе 2. Когда произойдет авария на втором, напряжение автоматом переключится на первый.

Основные типы шкафов и щитов АВР

Щит АВР на два ввода на контакторах (пускателях)

Установка шкафа АВР на пускателях – это самый простой способ создать резервное питание. Этот шкаф – наиболее бюджетный вариант установки АВР. Как правило, в шкафах АВР на 2 ввода используют автоматические выключатели. Они нужны для того, чтобы защитить систему от перегрузок и замыканий. Защиту от перекоса фаз и скачков напряжения осуществляет реле напряжения. Кроме этого, реле становятся «мозгом» всей системы автоматического ввода резерва.

Шкаф АВР с двумя контакторами работает по следующему принципу. Два контактора подключены к первому и второму источнику соответственно. Первый контактор замкнут, а у второго цепь разомкнута. Электричество идет через ввод № 1.

Внимание! В случае, когда у АВР логика приоритета второго ввода, ситуация будет обратной: цепь второго контактора замкнута, а первого – разомкнута.

Если подача тока на первом вводе пропадет, а на втором будет нормальной, то контакты второго пускателя замкнутся, и механизм переключится на него. Как только на первом вводе напряжение восстановится – схема перейдет в первоначальное состояние.

При помощи реле здесь можно отрегулировать время задержки, с которой будет осуществляться переключение с одного источника на другой. Оптимальная задержка – от 5 до 10 секунд, она позволит обезопасить систему от ложного срабатывания АВР. Ложное срабатывание может произойти, например, в случае просадки напряжения.

Справка! Для того чтобы оба контактора не могли включиться одновременно, в щитах АВР используют дополнительные механические блокировки.

Щит АВР на 2 ввода на автоматах с моторным приводом

Они лучше всего подходят для использования при номинальных токах 250-6300А. Когда ток на основном вводе пропадает, специальные электромоторы получают сигнал и взводят пружины запасного выключателя, переключая нагрузку на другой ввод.

Основные плюсы шкафов АВР на моторе:

  • Ресурс по перезагрузкам намного больше, чем у АВР с пускателями;
  • Подключить шины к такому автомату проще;
  • Щит АВР на автоматах может работать также и в ручном режиме. В таком случае включить или отключить автомат можно с помощью специальных кнопок.

Суть функционирования этого щита заключается в следующем. Если на основном вводе случилась авария, автоматика проверяет, готов ли ввод 2 для подачи тока. Если все в порядке, то пружина автомата второго ввода взводится, и подается электроэнергия. Когда ввод № 1 снова может работать в штатном режиме, весь процесс идет в обратном порядке, подавая электроэнергию на основной ввод.

На щитах с моторным приводом, как правило, устанавливается лицевая панель, на которой можно отслеживать все изменения в АВР. А для предотвращения одновременного срабатывания двух автоматических выключателей нередко используют электрические блокировки.

Щит АВР на 3 ввода

Эти шкафы являются одними из самых надежных источников питания. Все потому, что в АВР на 3 ввода есть две запасных линии, что обеспечивает максимально низкую возможность отключения питания на объекте. Обычно такие шкафы АВР используют при взаимодействии с потребителями первой категории надежности электроснабжения. К ним относятся такие объекты, обесточивание которых влечет за собой угрозу для жизни людей или безопасности государства, а также может причинить большой материальный ущерб.

Щиты АВР на 3 ввода работают по двум наиболее распространенным схемам.

Первая – это когда одна секция потребителей питается от трех независимых линий. Тогда можно установить приоритет для одного из вводов, а можно работать без приоритета. Нагрузка будет подключена туда, где нормализовано напряжение.

Вторая схема функционирования щита АВР на 3 ввода состоит в том, что две секции потребителей работают от двух линий, которые независимы друг от друга. Третий ввод подключается к запасному источнику питания. В случае аварийной ситуации он подключается к одной из секций.

Справка! Подобные щиты могут быть оснащены и механической блокировкой, и автоматами с электроприводами.

Вводно-распределительное устройство с АВР

Устройство используется для приема и учета электричества, а также для защиты зданий от короткого замыкания или перегрузки. Шкафы ВРУ с АВР используют в сетях переменного тока с напряжением 380/220В с частотой 50Гц.

Шкафы ВРУ с автоматическим вводом резерва представляют собой отдельную панель, где функционирует как автоматическое, так и ручное переключение, а также происходит учет электроэнергии, которая потребляется на каждой линии.

Шкафы ВРУ состоят из:

  • Блока введения и вывода кабеля.
  • Блока автоматического ввода резерва.
  • Блока, где происходит учет потребляемого электричества.

Также они могут быть многопанельными. Тогда дополнительно в них будут установлены противопожарные панели, распределительные панели и другие, в зависимости от требований к электроустановке.

Щит АВР для запуска генератора

Дополнительное питание от генератора электроэнергии позволяет почти полностью избежать полного обесточивания. Это один из самых надежных способов создать бесперебойную подачу электричества. Шкаф АВР в этом случае необходим, чтобы обеспечить автоматическое функционирование генератора по заданному алгоритму.

Шкаф АВР для генератора может работать и в автоматическом, и в ручном режиме. Изначально в нём установлен автоматический режим, но вы можете его легко изменить.

Важно! Для корректной работы связки АВР-генератор последний должен иметь возможность запускаться автоматически.

Когда на вводе 1 прекращается подача электричества, система АВР отправит сигнал для запуска генератора. После того, как генератор начнет нормально функционировать, и напряжение на втором вводе достигнет нужного уровня, механизм переключится на резервный источник. Благодаря установленному реле времени второй ввод не будет подключен к генератору, пока он не начнет работать в штатном режиме. Как только на основном (первом) источнике будет восстановлена подача электроэнергии, генератор будет отключен, а питание переключится на ввод 1.

В ручном режиме работы включение и отключение генератора происходит за счет нажатия специальных кнопок.

БУАВР

Блок управления автоматического включения резерва работает в составе устройств АВР и осуществляет переключение с одного источника на другой. Также он контролирует состояние линий, управляет контакторами и магнитными пускателями, моторами и запускает электрогенератор.

БУАВР в течение определенного периода измеряет напряжение в фазах и обрабатывает результаты в реальном времени. Благодаря этому он может определять среднее значение напряжения в каждой фазе. БУАВР имеет повышенную устойчивость к перенапряжению.

АВР Zelio Logic

Система автоматического ввода резерва с релейной логикой переключения между источниками. Используется программируемое реле Zelio Logic. Одним из основных преимуществ выбора такого реле является европейское качество при относительно низкой стоимости. Также реле Zelio Logic отличается довольно простым программированием. Для корректного использования достаточно базовых знаний. Также реле имеет графический интерфейс, что серьезно упрощает взаимодействие.

АВР ATS

АВР ATS – это шкафы АВР с интеллектуальными микропроцессорными блоками. На данный момент такой вариант шкафа АВР является самым дорогостоящим на рынке. Наиболее востребованы они на промышленных предприятиях, где важно обеспечить надежную бесперебойную работу сети и максимально быстрое переключение на альтернативный источник питания. Некоторые АВР ATS переключаются с одного ввода на другой буквально за две секунды. Также таким блокам не нужно дополнительное питание. Они работают при 480В. Можно выбрать наиболее удобный алгоритм, а также автоматический или ручной режим.

Ссылка на основную публикацию
Adblock
detector