Генератор для поиска места повреждения кабелей - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Генератор для поиска места повреждения кабелей

Приборы для поиска повреждений и трассировки кабелей и трубопроводов

179 CB – Трассодефектоискатель

Индикатор обрыва. Поисковый комплект в составе датчика с тональным генератором и усилителя-приёмника для проверки телекоммуникационных систем и кабельных распределительных сетей, обнаружение проводов, «прозвонка» многожильных кабелей без нарушения изоляционной оболочки и гальванического контакта, тесты непрерывности и полярности, поворотный наконечник датчика для обеспечения удобства при работе с проводами и кабелями. Приемник 270х50х25 мм, 125 г, 9 в “крона”; генератор 86х63х26 мм, 130 г, 9 в “крона”.

180 CB – Комплект для поиска повреждений кабеля

Комплект: измерительный генератор 180 CB-G (измерительный генератор обеспечивает: определение полярности и состояния (свободно, занято, вызов) ТЛФ линии, идентификацию ТЛФ пар, обнаружение проводов без нарушения изоляционной оболочки (непрерывный и прерывистый сигнал), прозвон линий, тестирование коаксиальных кабелей, батарейное питание – 9 В) и пробник-усилитель 180 CB-A (усилитель с динамиком для обнаружения проводов и кабелей без нарушения изоляционной оболочки, выход для подключения наушников, батарейное питание – 9 В).

181 CB – Трассодефектоискатель

Индикатор обрыва. Поисковый комплект в составе датчика с тональным генератором и усилителя-приёмника для проверки телекоммуникационных систем и кабельных распределительных сетей, обнаружение проводов, «прозвонка» многожильных кабелей без нарушения изоляционной оболочки и гальванического контакта, тесты непрерывности и полярности, подключение до 2-х тестируемых линий со светодиодной индикацией Приемник 270х50х25 мм, 125 г, 9 в “крона”; генератор 86х63х26 мм, 130 г, 9 в “крона”.

183 CB – Трассодефектоискатель

Индикатор обрыва. Поисковый комплект в составе датчика с тональным генератором и усилителя-приёмника для проверки телекоммуникационных систем и кабельных распределительных сетей, обнаружение проводов, «прозвонка» многожильных кабелей без нарушения изоляционной оболочки и гальванического контакта, тесты непрерывности и полярности, подключение до 2-х тестируемых линий со светодиодной индикацией, тест сопротивления цепи, диода, емкости, постоянного и переменного напряжения с отображением значения звуковой и светодиодной сигнализацией (изменение частоты и уровня); приемник 270х50х25 мм, 125 г, 9 в “крона”; генератор 143х74,5х33,6 мм, 318 г, 1,5 В×6 (АА)

186 CB – Кабельный тестер + цифровой мультиметр

Кабельный тестер и цифровой мультиметр с тоновым генератором. Определение местоположения и проверка целостности кабеля (коннектор RJ11, 2 зажима), удаленное подключение устройства приема, светодиодная индикация состояния провода; диапазон усилителя приемника 1 Гц. 12 кГц, чувствительность Цена: 8820.00 руб.

187 MCT – Кабельный тестер LAN с функцией мультиметра

2 в 1: Кабельный тестер для проверки сетей LAN с функцией мультиметра. Функция тестера LAN: проверка целостности кабеля (RJ45/RJ11), удаленное подключение устройства приема, авто/ ручная функция сканирования, светодиодная индикация состояния провода. Функция мультиметра: изм. напряжения Uпост. 0…1000 В (погр. 0,5%)/ Uперем. 0…750 В (погр. 1%); сопротивление до 40 МОм (погр. 1,2%), прозвон цепи и тест p-n переходов, удержание показаний, индикатор разряда батарей, ЖК-дисплей (4000). Питание 9 В х 1 + 1,5 В х 2 (ААА). Тестер: 168 x 82 x 44 мм, 283 г. Приемник: 74 х 30 х 25 мм, 30 г

188 FFF – Идентификатор предохранителей, автоматов защиты и неисправности шины заземления

Определитель местонахождения плавкого предохранителя, автомата защиты или неисправности в цепи

220 В/50 Гц, генератор питается от тестируемой сети, приемник – от батареи 9В, определение уровня сигнала по шкале-индикатору и по зуммеру

1880 CB – Измеритель параметров кабелей

Цена на остатки по складу. || Измеритель параметров 2-х проводных и коаксиальных кабелей:низкоомное сопротивление 10 Ом – 200 кОм, высокоомное сопротивление 200 кОм – 200 МОм (испытательное напряжение 100 В, постоянное), постоянное/переменное напряжение 2 В – 100 В, емкость кабеля 100 пФ – 2 мкФ, длина кабеля до 50 км

191 CBI – Определитель отключающего устройства в сетях электропитания

Определение места повреждения в сети питания 220В/50 Гц, не требует выключения напряжения в сети, звуковой генератор питается от измеряемой сети, приемник от батареи 9 В

5500 CB – Поисковый комплект

Поисковый комплект в составе: датчика с тональным генератором и усилителя-приёмника. Используется для проверки телекоммуникационных систем и кабельных распределительных сетей. Обнаружение проводов, «прозвонка» многожильных кабелей без нарушения изоляционной оболочки и гальванического контакта. Тесты непрерывности и полярности. Поиск кабелей под напряжением и без напряжения. Измерение напряжения 12…300 В постоянное и переменное. Переключатель для выбора типа тонального сигнала. 8 вариантов тестового сигнала. Выбор мощности тестового сигнала. Индикация мощности сигнала на передатчике и на приемнике. Встроенный фонарик Индикация напряжения в тестируемой линии

8PK-MA009 – Светоскоп для проверки волоконно-оптических кабелей

Светоскоп для проверки волоконно-оптических кабелей предназначен для визуальной проверки состояния оптоволоконных кабелей до и после скалывания, герметизации, при опрессовке в разъемах. Типы разъемов: ST, SC. Увеличение: регулируемое, до 200х. Питание: 2 батареи AA. Габариты 148х48×25 (мм), вес 210 г

CableMeter – Измеритель длины кабеля

Измеритель длины кабеля в бухте методом сопротивления и рефлектометра. Графический дисплей с подсветкой. Высокая точность измерений за счет 4-х проводной схемы измерений. Датчик температуры и компенсация температуры для повышения точности. Возможность измерения кабелей сечением 0,05 – 500 кв.мм. Задание любых диаметров и сечения жилы. Измерение сечения жилы, коэффициента укорочения.

Fluke 2042 – Кабелеискатель

Профессиональный трассоискатель общего назначения. Поиск трасс обесточенных линий, а также находящихся под напряжением. Возможность отслеживания трасс кабелей и металлических труб в стенах и под землей глубиной залегания до 2,5 м. Диапазон измеряемых напряжений 12 В, 50 В, 120 В, 230 В и 400 В. Диапазон частот 0. 60 Гц.

Fluke 2042T – Передатчик

Дополнительный передатчик для кабелеискателя Fluke 2042

LA-1010 – Тестер для поиска скрытой проводки + лазерный указатель

Тестер для поиска скрытой проводки предназначен для поиска металла, дерева на небольшой глубине при проведении строительных работ. Может использоваться как простейший лазерный нивелир и уровень. Питание: 9 В; Погрешность лазера 1,25 см (1/2″) на расстоянии 6 м. Рабочая температура -7…50°С. Вес: 180 г.

LA-1011 – Кабель-тестер RJ45/RJ11

Кабель-тестер для проверки кабельных линий в тлф. и комп. сетях (RJ45/RJ11). Одновременный контроль до 8 кабельных жил с индикацией номера тестируемого кабеля и характера неисправности. С помощью прибора можно определять обрыв, короткое замыкание и перехлест жил витых пар. Мультиметр:

/=200 мА, сопротивление до 20 МОм, тест диодов, прозвонка. Размеры: 162х74,5х44 мм Вес: 308 г

LA-1012 – Детектор скрытой проводки

Детектор скрытой проводки (кабелеискатель) предназначен для поиска трубопроводоов, электропроводов под напряжением и без, предохранителей, аварийных выключателей, розеток, предохранительных коробок, мест разрыва и короткого замыкания проводов и т.п. Трассоискатель состоит из приёмника и передатчика. Глубина до 2.5 м. Определение напряжения проводника до 0.4 м. Условия эксплуатации 0. 40°С; отн. влажность Цена: 13700.00 руб.

LA-1013 – Детектор скрытой проводки

Детектор скрытой проводки используется для определение трассы эл. проводки, локализации точки обрыва кабеля, проверки эл. контакта между двумя точками, анализа тонового сигнала кабеля или телефонной линии. Питание батарея 9 В х 2 шт (тоновый генератор и приёмник). Размеры пробника: 228х57х25,4 мм. генератора: 58,5х58,5х34,3 мм. Масса: 270 г.

LA-1014 – Тестер-мультиметр для поиска скрытой проводки

Кабель тестер + мультиметр предназначен для поиска скрытой проводки без напряжения, проверки кабельных линий в телефонных и компьютерных и силовых сетях. Позволяет определять обрыв, короткое замыкание и перехлест жил. Тест RJ45/RJ11. Мультиметр:

/= 200 mA, R до 20 МОм, тест диодов, прозвонка. ЖКИ дисплей с подсветкой. Габаритные размеры 162х74.5х44 мм. Масса 328 г.

LKZ-1000 – Трассопоисковая система

Трассопоисковая система (активный и пассивный режимы). Возможность трассировки систем тепло- , водо-, газоснабжения, в том числе непроводящих (например, пластиковые трубы). Определение глубины залегания объектов до 3 метров с высокой точностью. Рабочие частоты 50Гц-32,768 кГц.

LKZ-700 – Комплект для поиска скрытых коммуникаций

Комплект для поиска скрытых коммуникаций в различных средах (бетон, кирпич, дерево, земля и т.п.), как находящихся под напряжением, так и лишенных напряжения. Позволяет: обнаружить провода на глубине до 2 м., обрыв проводов, сужений кабельных каналов; идентифицировать провода в проводке, выключатели предохранителей. Состоит из двух приборов: генератора и приемника. Чувствительность приемника устанавливается автоматически. Имеется возможность дополнительного увеличения разрешения светового табло (режим ZOOM), благодаря чему изменения в обследуемой цепи более заметны. При помощи приемника можно также установить, находится ли обследуемая линия под напряжением. Приемник обнаруживает электрическое поле 50/60 Гц и сообщает об этом на табло.

LKZ-710 – Комплект для поиска скрытых коммуникаций

Комплект для поиска скрытых коммуникаций: проводок в потолках, стенах и полах; места повреждения кабеля; идентификация выключателей и предохранителей; поиск сужений в кабельных каналах; кабеля на глубине до 60 сантиметров; трассы водопроводных труб и труб теплоснабжения; отдельных жил в системе проводов и кабелей; обнаружение направления каналов и отверстий. Вес

MI 2014 – Тестер кабельных сетей

Тестер кабельных сетей – прибор для комплексного тестирования локальных сетей и поиска повреждений на кабельных линиях (перекрестные пары, помехи, отсутствие экрана и др.); Определение длины кабеля (витая пара или BNC) и расстояния до места повреждения; Акустический генератор (0,80 – 1,2 кГц) + приемное устройство для трассировки (опция); Локаторы для нумерации удаленных розеток; Предустановка параметров стандартных типов кабелей; Разъемы для подключения RJ45 100 Ом и BNC 50 Ом.

MI 2016 PS – Анализатор кабельных сетей (профессиональный комплект)

Анализатор кабелей – прибор для комплексного тестирования и поиска повреждений кабельных сетей (перекрестные пары и помехи, КЗ, несогласованные пары, плохие контакты, отсутствие экрана и др.); Определение длины кабеля (витая пара или BNC) и расстояния до места повреждения. большой ЖКИ с высоким разрешением; комплект переговорного устройства; предварительный выбор предельных значений и методов тестирования; порты USB и RS 232.

MI 2016 ST – Анализатор кабельных сетей (базовая комплектация)

Аналог MI 2016 PS. Один MultiLAN 350 заменен удаленным модулем MultiLAN 350 RU

MI 2093 – Трассодефектоискатель

Прибор для поиска кабелей в стенах, потолках, полу и земле; определение, под напряжением ли кабель; определение местоположения неисправности и короткого замыкания в кабелях; поиск скрытых розеток и распределительных коробок; обнаружение отдельного провода в пучке проводов; поиск трубопроводных сетей и других проводящих контуров.

Читайте также:  Генератор ШИМ сигнала с изменением скважности

MS6810 – Тестер кабельных линий

предназначен для проверки коаксиальных (BNC) кабелей, экранированных (DTP) и неэкранированных (STP) витых пар на соответствие стандартам 10Base-T, Token Ring, 568A, 568B и AT&T258A; проверка наличия неподключенных жил (или обрыв), замыкание жил, ошибочное и инверсное подключение жил; проверка целостности экранировки кабеля; возможность тестирования кабелей одним человеком; наглядная и удобная индикация результатов тестирования;

TDR-410 – Рефлектометр

Рефлектометр до 4 км для определения мест повреждения: силовых кабелей, телекоммуникационных и телефонных кабелей, коаксиальных кабелей. Обнаружение обрыва, короткого замыкания, а также любых повреждений, связанных с изменением величины сопротивления. Графическое отображение повреждения и автоматический расчет расстояния до места повреждения с отображением значения на дисплее. Габариты 165x90x37 мм. Вес 350 г.

X-410 Master – Отборник кабеля

Отборник кабеля предназначен для определения нужного кабеля (до 29 мм) из пучка. Приобретается как опция к Поиск-410 Мастер или работает автономно с генератором ГК-мини

Определение места повреждения кабеля

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Поиск повреждений кабеля индукционным методом

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля

В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:

tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.

Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.

Акустический метод

Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.

Различные схемы, применяемые при акустическом методе поиска повреждений кабеля

Обозначения:

  1. Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
  2. Схема для поиска заплывающих пробоев.
  3. Применение работоспособных токопроводящих элементов (задействована емкость жил).
  4. Схема для поиска обрыва.

Видео по теме:

Емкостной метод

Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.

Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля

Обозначения:

  • R1, R2, R3 – регулируемые резисторы.
  • Cэ – эталонный высоковольтный конденсатор.
  • L – расстояние до места обрыва.
  • Lк – общая длина КЛ.
  • 1 – токоведущие элементы кабеля.
  • 2 – защитная оболочка.
  • 3 – место обрыва.

Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .

Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.

Метод колебательного разряда

Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.

Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля

Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.

Метод петли

Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.

Устройство для поиска повреждения кабеля методом петли

Обозначения:

  • Г – гальванометр.
  • R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
  • Lk – длина КЛ.
  • L – расстояние до дефектного участка.
  • 1 – токопроводящие элементы кабеля.
  • 2 – перемычка между целой и дефектной жилой.

После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .

Метод накладной рамки

Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.

Локализация повреждения кабеля методом накладной рамки

Обозначения:

  1. Накладные рамки.
  2. Место пробоя изоляции.

Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя

Определение места повреждения кабеля индукционным методом

С помощью индукционного метода поиска локализуются обрывы жил, замыкания жила-жила, жила-оболочка, двух- и трехфазные замыкания устойчивого характера при различных значениях переходного сопротивления в месте дефекта. Основные принципы поиска индукционным методом, изложенные в статье реализуются с применением специализированного оборудования. Указанные в статье конкретные величины параметров получены при использовании поискового оборудования семейства КП-100К, КП-250К и КП-500К производства компании “АНГСТРЕМ” (применение иного оборудования с использованием указанных в статье величин параметров может оказаться безуспешным).

Читайте также:  Как сделать ветрогенератор из автомобильного генератора

Для всех видов повреждений перед началом ОМП* определяют и размечают трассу кабеля.
* ОМП – определение места повреждения

Поиск обрыва жилы

Генератор поисковый подключается к кабельной линии по схеме «оборванная жила-броня» – Рис. 1 (а)

Рис.1. Непосредственное подключение генератора по схеме «оборванная жила – броня»

Этот вариант поиска использует наличие распределенной емкости кабельной линии. Сигнальный ток генератора протекает через подключенную к нему поврежденную жилу, распределенную емкость кабеля и броню кабельной линии. При удалении от начала кабеля ток в подключенной жиле постепенно убывает из-за ответвления на распределенную по длине емкость. Соответственно интенсивность поля, вокруг кабеля, при удалении от точки подключения к генератору также убывает. Напряженность магнитного поля над кабелем в месте обрыва становится нулевой. Характер изменения магнитного поля вдоль кабельной линии показано на Рис. 1 (б).

Как видно из графика точность определения места обрыва невысока. Чтобы уменьшить погрешность определения места обрыва целесообразно подключать генератор поочередно к разным концам поврежденной жилы, проводя поиск на участке, к которому подключен генератор.

Для увеличения напряженности магнитного поля над кабельной линией, необходимо увеличить ток, протекающий по кабелю. Это позволит более четко отслеживать сигнал. Увеличения тока можно добиться уменьшением емкостного сопротивления, либо увеличением частоты генератора. Уменьшить емкостное сопротивление можно увеличив погонную емкость кабеля параллельным соединением нескольких жил кабеля.

Для повышения точности определения места повреждения можно рекомендовать следующую последовательность действий. Генератор подключают к одному концу кабеля. Следуют вдоль трассы, контролируя уровень сигнала на приемнике . При уменьшении сигнала до определенного уровня, например, до 5 ед. отмечают на трассе эту точку. Затем генератор подключают к другому концу кабеля и повторяют процедуру. Расстояние между двумя отмеченными точками с одинаковым уровнем сигнала делят пополам. Это и будет наиболее вероятная точка обрыва.

Поиск междуфазного повреждения

Рис.2. Схема подключения генератора к двум поврежденным жилам кабельной линии в случае их короткого замыкания.

С игнальный ток генератора протекает непосредственно по поврежденным жилам кабельной линии во встречных направлениях. Как известно в этом случае магнитное поле, создаваемое током обратно пропорционально квадрату расстояния от кабеля. Генератор при поиске включен в режиме непрерывной генерации. Поиск производится на минимальной частоте – 480 Гц . Эта частота оптимальна с точки зрения минимизации потерь и наводок на соседние коммуникации и позволяет локализовать междуфазные повреждения на расстояниях в несколько километров.

Перед началом поиска повреждения необходимо выбрать и задать минимальный ток генератора, при котором приемник уверенно принимает сигнал генератора на максимальной чувствительности. Реализация этого правила требует наличия двух операторов. Один из операторов регулирует уровень сигнального тока, пошагово повышая его и одновременно фиксируя его стабильность. Второй оператор, находящийся над трассой кабеля в зоне повреждения с приемником ПП-500А или ПП-500К , фиксирует момент появления сигнала достаточного для уверенного поиска. На практике достаточно сигнального тока, обеспечивающего при максимальной чувствительности приемника уровень сигнала в 25…50% полной шкалы его индикатора. Хотя решающим в выборе может быть личный опыт оператора. Например, для кабеля ААБ сечением 50 кв.см, проложенного на глубине 70 см при частоте генератора 480 Гц и небольшом расстоянии от места подключения генератора до повреждения достаточно тока 100…200 мА. Работа на частоте 9796 Гц требует существенно большего тока.

Если выбранный сигнальный ток остается стабильным, значит, сопротивление в точке повреждения кабеля не изменяется под воздействием протекающего тока. Это гарантирует успех поиска не зависимо от величины переходного сопротивления в точке повреждения – стабильность сопротивления дефекта здесь ключевой фактор. В случаях, когда замыкание произошло в результате аварии его сопротивление, как правило, близко к нулю и достаточно стабильно. Повреждения обнаруженные в процессе испытания могут иметь очень большие сопротивления. Если это сопротивление не меняет свою величину при протекании тока от поискового генератора и приемник обладает достаточной чувствительностью, то для локализации места повреждения можно применять индукционный метод поиска (без прожига). Однако элементарный расчет показывает, что такая ситуация возможна только для достаточно низких переходных сопротивлений.

Кроме того, минимальный сигнальный ток позволяет минимизировать сигнал, наведенный на близко расположенные коммуникации и помехи на приемник от этих коммуникаций.

Если в месте повреждения есть электрический контакт поврежденной жилы с оболочкой желательно устранить его, например, воздействуя на ненужный контакт высоковольтным импульсом.

При движении оператора с приемником вдоль трассы кабельной линии уровень принимаемого сигнала будет периодически уменьшаться и увеличиваться. Это объясняется наличием повива (скрутки) жил кабельной линии. Из-за повива жил и взаимовлияния магнитных полей от двух противоположно направленных токов в жилах вокруг кабеля возникает результирующее спиральное поле («твист-эффект»). На индикаторе приемника это и будет проявляться периодическим изменением сигнала с шагом повива. На Рис. 3 (а) показаны повив двух короткозамкнутых жил кабельной линии и токи в них. На Рис.3 (б) приведен график уровня сигнала при движении с горизонтально расположенной катушкой приемника вдоль трассы кабельной линии. На Рис.3 (в) показано распределение магнитных полей от двух свитых жил в разрезе А–А и В–В кабельной линии. При вертикальном расположении поисковой катушки слышимость также периодически изменяется из-за скрутки, рис. 3 (г). В точке повреждения может быть, как увеличение, так и уменьшение уровня сигнала. Это зависит от ориентации жил в месте повреждения. После прохождения места повреждения уровень сигнала снижается до нуля, периодически меняющийся сигнал обусловленный шагом скрутки отсутствует. Наличие сигнала скрутки до места повреждения и отсутствие после – главный признак, позволяющий точно локализовать место междуфазного повреждения. Следует помнить, что сигнал с шагом повива будет наблюдаться при глубине прокладки кабеля не превышающей шаг повива более чем на 20…50%.

Рис.3. Изменение сигнала кабельной линии из-за повива

На рис. 4 показана кабельная линия с муфтой и участком, имеющим увеличение глубины залегания. Вверху приведена зависимость интенсивности магнитного поля кабельной линии от длины. Над муфтами и другими неоднородностями кабельной линии интенсивность магнитного поля изменяется. Непосредственно над муфтой уровень сигнала увеличивается за счёт большего расстояния между жилами в муфте. Длина интервала с максимальным уровнем сигнала увеличивается относительно шага скрутки кабеля (c>d, рис. 4). За муфтой сигнал опять меняется по уровню с шагом скрутки. По этим признакам определяется место расположения муфты на кабеле. В местах, где кабельная линия плавно уходит на большую глубину наблюдается плавное уменьшение интенсивности магнитного поля. В местах, требующих особой защиты кабельной линии от механических повреждений, кабель прокладывают в металлических трубах. В этих случаях из-за экранирования наблюдается значительное ослабление интенсивности магнитного поля. В месте короткого замыкания между жилами кабельной линии ток от индукционного генератора меняет свое направление, структура магнитного поля вокруг кабеля изменяется, и компенсация от жил проявляется более слабо. Поэтому над местом повреждения интенсивность магнитного поля увеличивается (Рис. 4), а после прохождения места повреждения плавно уменьшается, при этом сигнал от шага скрутки практически не наблюдается.


Рис.4. Кабельная линия с неоднородностями и распределение магнитного поля по длине

Трудности при локализации междуфазного повреждения возникают, когда кроме основного полезного сигнального тока протекающего по жилам кабеля присутствуют, так называемые, токи растекания. Эти токи возникают, если кроме основного пути для тока (генератор – жила 1 – повреждение – жила 2 – генератор) существуют пути утечки тока на «землю». Например, в месте повреждения есть утечка или замыкание на оболочку и броню. Ток растекания в отличие от сигнального является током одиночного проводника. Поле, создаваемое таким током, убывает обратно пропорционально расстоянию от кабеля в то время как поле сигнального (ток пары проводников) обратно пропорционально квадрату расстояния. Понятно, что в таком случае токи растекания даже значительно меньшие сигнального могут создать поле «забивающее» полезное поле сигнального тока. Радикально решить эту проблему можно ликвидировав замыкание или утечку в месте повреждения и разорвав все связи кабеля с землей. Однако если кабель имеет не одно повреждение и заземленные муфты такое решение проблематично.

Хотите получать полезные методические материалы?

Определение мест повреждения кабеля

Мы проводим поиск кабельных линий, трассировку, поиск мест повреждения. В работе используем приборы :

  1. Рефлектометр компьютерный РЕЙС 405 ;
  2. Рефлектометр РЕЙС 305, 105М ;
  3. Генератор ГП-500К, ГП 500Б, ГП-100К ;
  4. Приёмник поисковый ПП-500К
  5. Рамка поисковая АР-500 ;
  6. Генератор импульсный высоковольтный ГИ-20/2 ;
  7. Digiphone Plus, NT — приемник ударных волн;
  8. Аппарат прожига кабелей АПК-14-7000 .

Методы поиска : акустический, индукционный, с применением прожига и дожига изоляции.

Также наша электролаборатория производит испытание высоковольтного кабеля

Стоимость работ

от 18000 рублей

  • Выезд на объект и проведение работ

от 20000 рублей

  • Поиск повреждения кабеля из сшитого полиэтилена

Повреждение кабельных линий: способы и методы обнаружения

Большинство крупных электрических соединений между потребителями энергии и источниками осуществляется при помощи кабельных линий. Чаще всего это система параллельных друг другу кабелей, муфт и крепежей. Повреждение даже в самой малой степени чревато как минимум экономическими потерями.

Наиболее частые повреждения

Кабельные линии возможно протянуть подземным или надземным способом. При этом характер их повреждений будет схожим. Чаще всего происходит следующее:

  • бывают повреждены одна или несколько жил. Замыкание при этом осуществляется на грунт;
  • повреждены несколько жил с замыканием друг на друга;
  • разрыв кабеля с заземлением;
  • разрыв без заземления;
  • возникновение так называемого «заплывающего пробоя», когда замыкание происходит при повышении напряжения, после нормализации ситуация стабилизируется;
  • нарушена целостность изоляционного слоя.

Любое повреждение требует скорейшего устранения. Так как происходит нарушение схем подачи энергии, ставится под сомнение надежность всего электроснабжения конечных пользователей. Это оказывает влияние и на технико-экономические показатели всей сети в целом.

На фото видно, что мы имеем дело с низкоОмным пробоем, такое место повреждения найти проще всего.

Причинами повреждений могут быть:

  • в различные сезоны происходит подвижка грунта. Например, в весенний период в результате резкого оттаивания отдельных участков, линии могут испытывать излишнее натяжение, которое приводит к разрыву;
  • нарушение условий подачи, в частности перегрузки по току;
  • нарушения при технологии прокладки линий;
  • работы вблизи линий с нарушением границ;
  • линии могут подвергаться воздействию транзитных токов.
Читайте также:  Принцип работы автомобильного генератора переменного тока

Поиск повреждения кабеля

Большая часть кабельных линий прокладывается под землей. Выгода такого способа в следующем:

  • не требуется сооружать громоздкие конструкции. В случае наземного размещения линии это необходимо. Таким образом предотвращается сознательное их повреждение;
  • полностью прекращается доступ посторонних лиц. Любые работы на линии будут проводиться исключительно силами специализированных организаций;
  • за счет подземной прокладки можно сократить длину. Это происходит за счет того, что линия проводится по самому кратчайшему и прямому пути между источником и потребителем.

При всех наглядных плюсах у такого способа размещения трассы есть и свой минус. Самый большой из них – сложное отыскание мест повреждений кабельных линий, поскольку открытая прокладка позволяет проводить регулярный визуальный осмотр и своевременно осуществлять ремонт. Для подземной же это довольно затруднено.

Отыскание повреждений кабельных линий начинается с определения предварительной зоны, где произошло нарушение. Только после этого уточняется конкретное место, а затем и тип повреждения. В зависимости от того, с какой по характеру поломкой пришлось столкнуться специалистам, они подбирают оптимальную методику.

Методы выявления повреждений

После того, как определено место повреждения кабеля или трассы, этот участок отсоединяют от запитки и от подключенного оборудования. При этом все методики можно разделить на относительные и абсолютные. Первые не очень точны. Фактически они всего лишь более точно определяют зону, где случилось повреждение. Вторая группа методов способна указать точное место аварии.

На этом фото можно увидеть показания рефлектометра рейс-405, примерное расстояние до места обрыва.

У каждого из них имеются свои особенности. В конкретном случае может использоваться свое сочетание методов. Для быстрого устранения любых форм аварий лучше всего обратиться к профессионалам. Ведь для подобных работ требуются специалисты не только с соответствующим образованием, квалификацией и допусками, но еще и опытом. Немаловажно в этом случае и техническое оснащение.

Подготовка к поиску

Как это ни странно, но поиск начинается с проведения испытаний. Для этого проверяют:

  • фазную изоляцию. При этом изучают сопротивление изоляционных слоев каждой из жил по отношению к грунту;
  • линейную изоляцию. Это сопротивление изоляционных слоев отдельных жил по отношению друг к другу;
  • неприкосновенность токоведущих жил, наличие разрывов.

Все эти характеристики проверяются в отношении обоих концов участка трассы, вышедшей из строя или демонстрирующей признаки неполадок.

При этом нужно создать условия, когда сопротивление между жилами и оболочкой будет минимальным. Замеры производятся мультиметром. Условия создаются при прожигании изоляционного слоя специальной аппаратурой – кенотронами, трансформаторами или высокочастотными генераторами.

В результате работы оборудования в кабель подается высокое напряжение, создающее пробой в изоляционном слое поврежденного участка. Через такой пробой происходит утечка тока через расплавленную изоляцию. Фактически состояние изоляции сознательно ухудшается для того, чтобы его можно было обнаружить одним из далее рассматриваемых методов.

Относительные методы поиска

К таким методам относят те, которые могут иметь некоторую погрешность.

Этот способ подходит для выявления повреждений любых типов, за исключением заплывающего пробоя. В процессе осуществления поиска измеряется временной период между стартом импульса тока и моментом фиксации его возврата от места повреждения.

Возможно это благодаря тому, что скорость таких импульсов в кабельных трассах неизменна. Это 160 м/мкс. Все замеры осуществляются линейкой приборов ИКЛ. Получаемые с их помощью значения позволяют установить не только место, но и характеристики повреждения. Например, отрицательные – показатель короткого замыкания, а положительные – обрыва жил.

Этим способом пользуются на линиях, состоящих из нескольких кабелей. При этом один или два могут быть повреждены, а третий – обязательно исправен. В случае использования этого метода создается мост постоянного тока между имеющейся исправной жилой и поврежденной.

При помощи замеров и соответствующих расчетов можно легко выяснить приблизительное расстояние до точки разрыва или пробоя. Недостатком такого способа являются довольно обширные временные затраты на проведение измерений и вычислений.

Способ позволяет определить расстояние до зоны с повреждением от конца участка трассы. Точно так же, как и в случае с предыдущим методом, создается мост электротока постоянного или переменного характера. Далее производятся замеры, выявляющие емкость оборванной жилы, высчитывается расстояние до зоны обрыва.

Все вышеуказанные методы позволяют выявить участок, но не с конкретную точку. Для уточнения следует использовать далее один из абсолютных способов.

Абсолютные методики поиска

Это наиболее точные способы выявления зон повреждения. Их использование становится доступным после того, как определен участок трассы, имеющий подозрительные показания.

При выполнении поиска может использоваться специальный генератор импульсов, а также приемники колебаний звукового характера. Применяется эта методика в случае повреждений практически любых видов и непосредственно на самой линии.

В зоне нарушения изоляции создается искровый разряд, звук от колебаний которого фиксируется приборами. При этом слышимость определяется глубиной залегания кабельной трассы и плотности поверхностного грунта. Идеальным считается расстояние с поверхности до кабеля от 1 до 5 метров.

Невозможно точно определить точку повреждения при использовании методики на открытых линиях, либо линиях, проложенных в каналах и туннелях. В этом случае свойства распространения звука кардинально меняются, что не дает возможности точно рассчитать место повреждения.

Метод особо действенен в следующих случаях:

  • при пробоях изоляционного слоя отдельных жил. Даже если они пришлись не на землю, а на рядом проходящий кабель;
  • при обрыве в сочетании с пробоем, аналогичным указанному выше;
  • для обнаружения элементов, обеспечивающих соединение отдельных частей трассы в единое целое;
  • для выяснения глубины пролегания кабельной линии.

Специальным прибором, имеющим чувствительную рамку, регистрируются изменения в электромагнитном поле зоны, где проложена кабельная линия, по которой пропускается ток звуковой частоты. Следует знать, что точность определения зависит от присутствия помех и глубины расположения линии.

  • Методика накладной рамки.

Такой способ чаще всего применим на открытой линии. Для подземной нужно будет отрыть несколько шурфов. Сам метод аналогичен индукционному. Но в данном случае измерения производятся рамкой с поворотом вокруг оси кабеля.

Только профессионалы смогут с точностью подобрать необходимое сочетание методов для быстрого выполнения работ. Это обусловлено тем, что используются более совершенные знания, а также обширный опыт работ и современное оборудование. Совокупность всех представленных фактором не только повышает скорость осуществления процедур, но и точность установления зон.

А вот и результат нашей работы, найденный обрыв. Как выяснилось кабель перебили экскаватором, при организации новой стройплощадки.

Требования к персоналу

При проведении настолько сложных работ нельзя пользоваться подручными методиками. Недопустимо осуществление поиска людьми, имеющими лишь приблизительное понимание опасности в случае возникновения аварий на кабельных трассах.

Специалисты, занимающиеся проведением испытаний, должны иметь группу по энергобезопасности не ниже третьей, а руководители – не ниже четвертой. Даже охрана должна иметь не ниже второй группы по ЭБ.

Все работники должны обладать соответствующим образованием. Им необходимо получить допуски и пройти обучение по технике безопасности и охране труда. Но даже при наличии всех «корочек» только большой опыт работы сможет дать необходимые полноценные навыки, которые доведут соблюдение всех мер безопасности до автоматизма.

Фотографии с последних объектов :

Приборы определения мест повреждений кабеля

Производитель

  • Baur
  • Megger
  • Onsite High Voltage

Цена, руб.

  • 38 600 — 44 000
  • 44 000 — 54 000
  • 54 000 — 69 000
  • 69 000 — 76 600

Статус

  • Доступен к заказу
  • Снят с производства

Госреестр

Цифровой кабельный рефлектометр для локализации дефектов низковольтных кабелей

Кабелеискатель позволит быстро и точно локализовать повреждение кабеля в земле

Комплект для определения фаз BAUR paula

Система идентификации кабелей BAUR KSG 200

Универсальный кабельный локатор BAUR UL 30

Передатчик звуковой частоты BAUR TG 600

Генератор низкой частоты для трассировки повреждений кабелей

Портативный импульсный рефлектометр BAUR TDR 510

Портативный импульсный рефлектометр BAUR TDR 500

Генератор импульсного напряжения BAUR SSG 3000

Комплект BAUR для определения фаз

Поисковый приемник BAUR KMF 1

Генератор высоковольтных импульсов напряжения для поиска повреждений в кабелях

Импульсный тестовый генератор для выявления неисправностей низковольтных кабелей

Прибор для поиска неисправностей на металлических кабелях

Система диагностики и локализации мест повреждений кабельных линий OWTS DAC HV400

Система диагностики и локализации мест повреждений кабельных линий OWTS DAC HV300

Система диагностики и локализации мест повреждений кабельных линий OWTS DAC HV200

Система диагностики и локализации мест повреждений кабельных линий OWTS DAC МV20

Система диагностики и локализации мест повреждений кабельных линий OWTS DAC МV10

Генератор импульсных напряжений BAUR SSG 2100

Генератор импульсных напряжений BAUR SSG 1500

Прибор для обнаружения повреждений кабельных линий

Система идентификации кабелей BAUR KSG 100

Импульсные генераторы Megger

Генератор импульсных напряжений BAUR SSG 1100

Генератор импульсного напряжения для пробоя кабеля

Прибор для определения мест повреждений кабеля BAUR IRG 3000

Импульсный рефлектометр для считывания дефектов на подземных одножильных кабелях

Цифровой рефлектометр 2х-канальный силовой TDR2000

Карманный рефлектометр Megger TDR900

Карманный рефлектометр Megger TDR500

Однофазный рефлектометр Megger MTDR1

Серия приборов для обнаружения повреждений Megger MPP-1000

Прожиговый трансформатор BAUR ATG 6000

Прожигающая установка BAUR ATG 2

Портативная система поиска мест повреждения кабелей Megger CFL40A

Автоматическая система испытания оболочек кабелей

Прибор для определения мест повреждения кабеля Megger PFL

Система испытания кабеля с изоляцией из сшитого полиэтилена

Одноканальный определитель повреждений кабеля – Рефлектометр Megger TDR1000/2

Приборы и оборудование для поиска повреждений кабеля

Портативные приборы и стационарные установки точно определяющие места повреждения кабеля. В нашем каталоге представлено оборудование для обнаружения повреждений кабелей производства компаний Megger и BAUR. Ухудшение состояния кабельных линии при эксплуатации, износ или повреждения изоляции — если вы сталкивались с этими проблемами, вы знаете, что идентифицировать место обрыва или повреждения не простая задача. Наше оборудование поможет решить её быстро и точно. Системы локации кабелей дистанционно определят и укажут на места повреждения.

Ссылка на основную публикацию
Adblock
detector