Генератор постоянного тока устройство и принцип действия - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Генератор постоянного тока устройство и принцип действия

Генераторы постоянного тока

Принцип действия генератора постоянного тока

Работа генератора основана на использовании закона электромагнитной индукции, согласно которому в проводнике, движущемся в магнитном поле и пересекающем магнитный поток, индуцируется э д. с.

Одной из основных частей машины постоянного тока является магнитопровод, по которому замыкается магнитный поток. Магнитная цепь машины постоянного тока (рис. 1) состоит из неподвижной части — статора 1 и вращающейся части — ротора 4. Статор представляет собой стальной корпус, к которому крепятся другие детали машины, в том числе магнитные полюсы 2. На магнитные полюсы насаживается обмотка возбуждения 3, питаемая постоянным током и создающая основной магнитный поток Ф0.

Рис. 1. Магнитная цепь машины постоянного тока с четырьмя полюсами

Рис. 2. Листы, из которых набирают магнитную цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Ротор машины набирают из стальных штампованных листов с пазами по окружности и с отверстиями для вала и вентиляции (рис. 2). В пазы (5 на рис. 1) ротора закладывается рабочая обмотка машины постоянного тока, т. е. обмотка, в которой основным магнитным потоком индуцируется э. д. с. Эту обмотку называют обмоткой якоря (поэтому ротор машины постоянного тока принято называть якорем).

Значение э. д. с. генератора постоянного тока может изменяться, но ее полярность остается постоянной. Принцип действия генератора постоянного тока показан на рис. 3.

Полюсы постоянного магнита создают магнитный поток. Представим, что обмотка якоря состоит из одного витка, концы которого присоединены к различным полукольцам, изолированным друг от друга. Эти полукольца образуют коллектор, который вращается вместе с витком обмотки якоря. По коллектору при этом скользят неподвижные щетки.

При вращении витка в магнитном поле в нем индуцируется э. д. с

где В — магнитная индукция, l — длина проводника, v — его линейная скорость.

Когда плоскость витка совпадает с плоскостью осевой линии полюсов (виток расположен вертикально), проводники пересекают максимальный магнитный поток и в них индуцируется максимальное значение э. д. с. Когда виток занимает горизонтальное положение, э. д. с. в проводниках равна нулю.

Направление э. д. с. в проводнике определяется по правилу правой руки (на рис. 3 оно показано стрелками). Когда при вращении витка проводник переходит под другой полюс, направление э. д. с. в нем меняется на обратное. Но так как вместе с витком вращается коллектор, а щетки неподвижны, то с верхней щеткой всегда соединен проводник, находящийся под северным полюсом, э. д. с. которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению э. д. с. на щетках — ещ (рис. 4).

Рис. 3. Простейший генератор постоянного тока

Рис. 4. Изменение во времени э.д.с. простейшего генератора постоянного тока

Хотя э. д. с. простейшего генератора постоянного тока постоянна по направлению, по значению она изменяется, принимая за один оборот витка два раза максимальное и два раза нулевое значения. Э. д. с. с такой большой пульсацией непригодна для большинства приемников постоянного тока и в строгом смысле слова ее нельзя назвать постоянной.

Для уменьшения пульсаций обмотку якоря генератора постоянного тока выполняют из большого числа витков (катушек), а коллектор — из большого числа коллекторных пластин, изолированных друг от друга.

Рассмотрим процесс сглаживания пульсаций на примере обмотки кольцевого якоря (рис. 5), состоящей из четырех катушек (1, 2, 3, 4), по два витка в каждой. Якорь вращается по направлению часовой стрелки с частотой n и в проводниках обмотки якоря, расположенных на внешней стороне якоря, индуцируется э. д. с. (направление показано стрелками).

Обмотка якоря представляет собой замкнутую цепь, состоящую из последовательно соединенных витков. Но относительно щеток обмотка якоря представляет собой две параллельные ветви. На рис. 5, а одна параллельная ветвь состоит из катушки 2, вторая — из катушки 4 (в катушках 1 и 3 э. д. с. не индуцируется, и они обеими концами соединены с одной щеткой). На рис. 5, б якорь показан в положении, которое он занимает через 1/8 оборота. В этом положении одна параллельная ветвь обмотки якоря состоит из последовательно включенных катушек 1 и 2, а вторая — из последовательно включенных катушек 3 и 4.

Рис. 5. Схема простейшего генератора постоянного тока с кольцевым якорем

Каждая катушка при вращении якоря по отношению к щеткам имеет постоянную полярность. Изменение э. д. с. катушек во времени при вращении якоря показано на рис. 6, а. Э. д. с. на щетках равна э. д. с. каждой параллельной ветви обмотки якоря. Из рис. 5 видно, что э. д. с. параллельной ветви равна или э. д. с. одной катушки, или сумме э. д. с. двух соседних катушек:

В результате этого пульсации э. д. с. обмотки якоря заметно уменьшаются (рис. 6, б). При увеличении числа витков и коллекторных пластин можно получить практически постоянную э. д. с. обмотки якоря.

Конструкция генераторов постоянного тока

В процессе технического прогресса в электромашиностроении конструктивный вид машин постоянного тока изменяется, хотя основные детали остаются теми же.

Рассмотрим устройство одного из типов машин постоянного тока, выпускаемых промышленностью. Как указывалось, основными частями машины являются статор и якорь. Статор 6 (рис 7), изготовленный в виде стального цилиндра, служит как для крепления других деталей, так и для защиты от механических повреждений и является неподвижной частью магнитной цепи.

К статору крепятся магнитные полюсы 4, которые могут представлять собой постоянные магниты (у машин малой мощности) или электромагниты. В последнем случае на полюсы насаживается обмотка возбуждения 5, питаемая постоянным током и создающая неподвижный относительно статора магнитный поток.

При большом числе полюсов их обмотки включают параллельно или последовательно, но так, чтобы северный и южный полюсы чередовались (см. рис. 1). Между главными полюсами располагаются добавочные полюсы со своими обмотками. К статору крепятся подшипниковые щиты 7 (рис. 7).

Якорь 3 машины постоянного тока набирается из листовой стали (см. рис. 2) для уменьшения потерь мощности и от вихревых токов. Листы изолируются друг от друга. Якорь является подвижной (вращающейся) частью магнитопровода машины. В пазы якоря укладывается обмотка якоря, или рабочая обмотка 9.

Рис. 6. Изменение во времени э.д.с катушек и обмотки кольцевого якоря

В настоящее время выпускаются машины с якорем и обмоткой барабанного типа. Рассмотренная ранее обмотка кольцевого якоря имеет недостаток, заключающийся в том, что э. д. с. индуцируется только в проводниках, расположенных на внешней поверхности якоря. Следовательно, активными являются только половина проводников. В обмотке барабанного якоря все проводники — активные, т. е. для создания той же э. д. с, что и в машине с кольцевым якорем, требуется почти в два раза меньше проводникового материала.

Расположенные в пазах проводники обмотки якоря соединяются между собой лобовыми частями витков. В каждом пазу обычно располагается несколько проводников. Проводники одного паза соединяются с проводниками другого паза, образуя последовательное соединение, называемое катушкой или секцией. Секции соединяются последовательно и образуют замкнутую цепь. Последовательность соединения должна быть такой, чтобы э. д. с. в проводниках, входящих в одну параллельную ветвь, имели одинаковое направление.

На рис. 8 показана простейшая обмотка якоря барабанного типа двухполюсной машины. Сплошными линиями показано соединение секций друг с другом со стороны коллектора, а пунктирными — лобовые соединения проводников с противоположной стороны. От точек соединения секций делаются отпайки к коллекторным пластинам. Направление э. д. с. в проводниках обмотки показано на рисунке: «+» — направление от читателя, «•» — направление на читателя.

Обмотка такого якоря имеет также две параллельные ветви: первая, образованная проводниками пазов 1, 6, 3, 8, вторая — проводниками пазов 4, 7, 2, 5. При вращении якоря сочетание пазов, проводники которых образуют параллельную ветвь, все время изменяется, но всегда параллельная ветвь образуется проводниками четырех пазов, занимающих постоянное положение в пространстве.

Рис. 7. Устройство машины постоянного тока якоря барабанного типа

Рис. 8. Простейшая обмотка

Выпускаемые заводами машины имеют десятки или сотни пазов по окружности барабанного якоря и число коллекторных пластин, равное числу секций обмотки якоря.

Коллектор 1 (см. рис. 7) состоит из медных изолированных друг от друга пластин, которые соединяют с точками соединения секций обмотки якоря, и служит для преобразования переменной э. д. с. в проводниках обмотки якоря в постоянную э. д. с. на щетках 2 генератора или преобразования постоянного тока, подводимого к щеткам двигателя из сети, в переменный ток в проводниках обмотки якоря двигателя. Коллектор вращается вместе с якорем.

При вращении якоря по коллектору скользят неподвижные щетки 2. Щетки бывают графитовые и медно-графитовые. Они крепятся в щеткодержателях, которые допускают поворот на некоторый угол. С якорем соединена крыльчатка 8 для вентиляции.

Классификация и параметры генераторов постоянного тока

В основу классификации генераторов постоянного тока положен вид источника питания обмотки возбуждения. Различают:

1. генераторы с независимым возбуждением, обмотка возбуждения которых питается от постороннего источника (аккумулятора или другого источника постоянного тока). У генераторов малой мощности (десятки ватт) основной магнитный поток может создаваться постоянными магнитами,

Читайте также:  Чем отличается инверторный генератор от обычного

2. генераторы с самовозбуждением, обмотка возбуждения которых питается от самого генератора. По схеме соединения обмоток якоря и возбуждения по отношению к внешней цепи бывают: генераторы параллельного возбуждения, у которых обмотка возбуждения включена параллельно с обмоткой якоря (шунтовые генераторы), генераторы последовательного возбуждения, у которых эти обмотки включены последовательно (сериесные генераторы), генераторы смешанного возбуждения, у которых одна обмотка возбуждения включена параллельно обмотке якоря, а вторая — последовательно (компаундные генераторы).

Номинальный режим генератора постоянного тока определяется номинальной мощностью — мощностью, отдаваемой генератором приемнику, номинальным напряжением на зажимах обмотки якоря, номинальным током якоря, током возбуждения, номинальной частотой вращения якоря. Эти величины обычно указываются в паспорте генератора.

Принцип действия генератора постоянного напряжения

Когда-то генераторы постоянного тока, преобразующие механическую энергию в электрическую, были единственными источниками электроэнергии. На сегодня чаще всего используются надежные трехфазные преобразователи переменного тока. Но в некоторых отраслях постоянный ток был регулярно востребован, поэтому устройства для выработки последнего неизменно совершенствовались.

Как работает

Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.

Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.

Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.

Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами.

Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.

Установка состоит из главных узлов:

  • неподвижная часть — главные и дополнительные полюса, станина;
  • вращающаяся часть (якорь) — стальной сердечник, коллектор.

В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

Классификация

Существуют генераторы постоянного тока с независимым возбуждением обмоток, с самовозбуждением. Последние модели используют электричество, которое ими же вырабатывается. По способу объединения обмоток якорей альтернаторы делят на устройства с возбуждением следующих типов:

Схема генератора постоянного тока представлена на картинке 5.

С параллельным возбуждением

Чтобы электроприборы работали в нормальном режиме, необходимо стабильное напряжение, которое не зависит от изменений в общей нагрузке. Эта проблема решается методом настройки параметров возбуждения. В таких генераторах катушка подключена (через реостат) параллельно обмотке якоря. Реостат может замыкают обмотку. В противном случае при разъединении цепи возбуждения внезапно повысится ЭДС самоиндукции, что может повредить изоляционный материал. В состоянии непродолжительного замыкания энергия превращается в тепловую, чем предотвращается разрушение устройства.

Электромашины с возбуждением такого вида не требуют внешнего источника питания. Самовозбуждение обмоток происходит под действием остаточного магнетизма в сердечнике магнита. Последние, для улучшения описанного процесса, производят из стали. Самовозбуждение длится до тех пор, пока ток не станет максимальным, а электродвижущая сила не покажет номинальное значение.

Преимущество вышеописанных электрогенераторов в том, что на них почти не влияют электротоки при коротком замыкании.

С независимым возбуждением

Источниками питания для обмоток нередко стают аккумуляторы или же иные устройства. В машинах с малой мощностью применяются постоянные магниты, обеспечивающие присутствие главного магнитного потока. На валу альтернатора располагают микрогенератор (возбудитель), который вырабатывает электроток для возбуждения якорных обмоток. Для этой цели необходимо от 1 до 3 % номинального тока якоря. Изменение электродвижущей силы выполняется регулирующим реостатом.

Достоинство: на возбуждающий ток не имеет воздействия напряжение на зажимах.

С последовательным возбуждением

Последовательными обмотками вырабатывается ток, который равняется электротоку альтернатора. В случае холостого хода отсутствует нагрузка, поэтому возбуждение нулевое. Это обозначает, что регулировочные свойства не существуют.

В агрегате с последовательным возбуждением почти нет тока, если ротор вращается на холостых оборотах. Чтобы запустить возбуждение, требуется подключение нагрузки к зажимам устройства. Явная связанность напряжения с нагрузкой считается огромным минусом последовательных обмоток. Подобные агрегаты используются лишь для питания электрических приборов, у которых нагрузка постоянная.

Со смешанным возбуждением

Самые лучшие свойства собраны в конструкции агрегатов со смешанным возбуждением. Особенность устройств в том, что они состоят из двух катушек:

  • основная — подключена параллельным способом к обмоткам якоря;
  • вспомогательная — подключена последовательным способом.

В цепи основной присутствует реостат, который регулирует ток возбуждения. Процедура самовозбуждения генератора со смешанным типом такая же, как у агрегата с параллельными обмотками (в самовозбуждении не принимает участия последовательная обмотка, так как отсутствует исходный ток). А свойства холостого хода идентичны характеристикам генератору с параллельной обмоткой. Такие особенности разрешают настраивать напряжение на зажимах устройства.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Где используются

Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.

Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.

Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

Читайте также:  Бензиновый генератор какой лучше выбрать

В чем секрет работы генератора постоянного тока: устройство и его принцип действия?

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

Как находить возможные неисправности генераторов и чинить их — подскажет подробная инструкция.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора. Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

Как любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.
В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

Генераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

С принципами работы симисторов познакомит эта статья. Как на таких полупроводниках собрать регулятор мощности, можно узнать тут.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков). Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.
Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

Генератор постоянного тока устройство и принцип действия

Генератор постоянного тока, принцип действия генератора постоянного тока, работа простейшей машины постоянного тока в режиме генератора

Рассмотрим принцип действия генератора постоянного тока на примере простейшей машины, изображенной на рис. 1.

Рис. 1. Простейшая машина постоянного тока

Магнитная система этой машины состоит из двух неподвижных полюсов N – S, создающих постоянный по величине магнитный поток. Основной магнитный поток в нормальных машинах постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. По общему правилу линии магнитного потока в пространстве между полюсами N – S направлены от северного полюса N к южному полюсу S.

В пространстве между полюсами находится якорь, на поверхности которого в диаметральной плоскости уложен виток обмотки якоря ab – cd. Концы витка присоединяются к двум медным сегментам пластинам коллектора, изолированным как друг от друга, так и от вала, на который они посажены вглухую. На пластины наложены неподвижные в пространстве щетки A и B, к которым присоединяется внешняя цепь, состоящая из каких-либо приемников электрической энергии. Расположение щеток не произвольно, а имеет существенное значение.

Приведем якорь во вращение с постоянной скоростью в заданном на­правлении, например, против вращения часовой стрелки. Так как проводники ab и cd находятся в совершенно одинаковых условиях один относительно по­люса N, другой относительно полюса S, то достаточно рассмотреть процесс наведения ЭДС только в каком-нибудь одном проводнике, например в проводнике ab. Предположим, что по всей длине активной части проводника, т. е. той части его, которая пересекает линии магнитного поля, индукция В имеет одно и то же значение. Если V — скорость перемещения проводника относительно магнитного поля, то по закону электромагнитной индукции в формулировке Фарадея мгновенное значение ЭДС, наводимой в проводнике при вращении якоря, определяется по формуле e = V. Величины l и V неизменны в данных условиях, следовательно, ЭДС e пропорциональна индукции B.

Таким образом, в рассматриваемых условиях характер изменения ЭДС в проводнике в зависимости от времени целиком определяется характером распределения магнитной индукции под полюсом.

Условимся называть линию, которая проходит через центр якоря точно посередине между полюсами N и S, геометрической нейтралью, а часть окружности якоря Т, соответствующую одному полюсу, – полюсным делением. Машина на рис. 1. имеет одну пару полюсов, т. е. два полюсных деления.

Распределение магнитной индукции реальной машины носит сложный характер. Но можно выделить первую или основную гармонику и с достаточ­ной степенью точности считать, что магнитная индукция распределяется под полюсами N и S синусоидально. В этом случае наводимая в проводнике ЭДС изменяется тоже синусоидально (рис. 2).

Рис. 2. Распределение магнитной индукции В под полюсами.

Изменение ЭДС во времени

Направление ЭДС определяется по правилу правой руки. Применив это правило, определим направление ЭДС в проводнике ab на рис. 1. Когда проводник проходит под северным полюсом, то в нем наводится ЭДС, направленная к нам из-за плоскости чертежа, а когда он проходит под южным полюсом, то в обратном направлении – от нас за плоскость чертежа. Таким образом, в проводнике ab наводится переменная во времени ЭДС, изменяющая свое направление два раза за один оборот якоря.

Время T, за которое происходит одно полное изменение ЭДС, называется периодом ЭДС. Число периодов в одну секунду называется частотой и измеряется в герцах (Гц). В общем случае, когда машина имеет p пар плюсов, частота наведенной ЭДС увеличивается пропорционально р, т.е.

где n – скорость вращения, измеряемая числом оборотов в минуту.

В обоих проводниках (ab и cd) вследствие симметрии индуктируются одинаковые ЭДС, которые по контуру витка складываются, и поэтому полная ЭДС якоря рассматриваемой машины

Рассмотрим форму полной ЭДС якоря еа. Из рис. 1. видно, что полпериода щетка А будет соприкасаться с коллекторной пластиной и соответственно с проводником ab, находящимся под северным полюсом. Вторую часть периода, когда виток повернется на 180°, щетка А будет соединена с проводником cd, находящимся также под северным полюсом, т. е. под полюсом той же полярности. Щетка А всегда соприкасается только с той пластиной, с которой соединен проводник, находящийся под северным полюсом; наоборот, щетка В соединяется только с тем проводником, который находится под южным полюсом. Следовательно, во внешней цепи ток будет протекать только в одном направлении, а именно, от щетки А к щетке В. Происходит выпрямление переменной ЭДС, наводимой в витке ab – cd, и переменного тока в пульсирующую ЭДС на щетках и пульсирующий ток во внешнем участке цепи (рис.3).

Читайте также:  Как проверить регулятор напряжения генератора мультиметром

Рис. 3. Выпрямленные ЭДС и ток

Полярность щеток и направление тока во внешней цепи остаются неиз­менными. Щетка А, от которой ток отводится во внешнюю цепь, считается положительной и обозначается «плюс», а щетка В считается отрицательной и обозначается «минус».

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Щетки необходимо установить на пластинах коллектора так, как показано на рис. 1. В этом случае в момент перехода щетки с одной коллекторной пластины на другую, когда виток замыкается накоротко, наводимая ЭДС равна нулю. Переменная ЭДС выпрямляется полностью, напряжение на щетках максимально.

На рис. 3. видно, что ток во внешней цепи изменяется от нуля до мак­симального значения, т. е. пульсации тока велики. Для уменьшения пульсаций тока следует на сердечнике якоря разместить несколько витков, равномерно распределенных по его окружности, и соответственно увеличить количество коллекторных пластин, т. е. применить более сложную по устройству обмотку якоря и соответственно более сложный коллектор.

Напряжение на зажимах генератора постоянного тока определяется вы­ражением

Ua – напряжение на зажимах обмотки якоря;

ra – сопротивление обмотки якоря и щеток.

Из приведенного выражения видно, что напряжение на зажимах якоря Ua будет меньше ЭДС якоря Еа на величину падения напряжения в сопротив­лении цепи обмотки якоря ra.

Проводники обмотки якоря с током Ia находятся в магнитном поле, по­этому на них будут действовать электромагнитные силы (рис. 4)

Рис. 4. Работа простейшей машины постоянного тока в режиме генератора

Эти силы создают электромагнитный момент Мэм. Как видно из рис. 4, в режиме генератора этот момент действует против направления вращения якоря и является тормозным.

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

ЭЛЕКТРООБОРУДОВАНИЕ

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую.

Принцип работы генератора постоянного тока

При вращении якоря создается магнитный поток, который возбуждает электрический ток в катушках, после чего этот ток (постоянный!!) идет на потребление.

Постоянный возможен при электромагнитной индукции

Генератор постоянного тока- нужно снимать электрическими специальными щетками

Генератор постоянного тока- статер выполнен виде обмоточного возбуждения

Генератор запускается про скорости движения вагона-40 км в час..

При скорости 40км в час запускается генератор постоянного тока, напряжение генератора больше.

Преимущество. Сразу вырабатывает ток. Не нужен выпрямитель. Обмотка возбуждения на полюсах. Акк.батарея заряжается стабильное напряжение в сети, обеспечивается с помощью релегенератора напряжения (_освещение)

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПЕРЕМЕННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую.

Принцип работы генератора переменного тока

В связи с тем, что ротор и статор имеет определенные «выступы», и в процессе вращения «выступы» чередуются со «впадинами», создается переменный. ток

8кВт- применяется в современных вагонах

Генератор переменнтого тока- это источник со смещенным возбуждением 2-х обмоточный и 3-х фазный генератор индуктивного типа
Индуктивный генератор (безконтактный) снимается со статера

Внктри крутится ротер.

Разница интервалов между ротером и статерем возникает магнитный поток..

Особенности переменного тока:

  1. не имеет обмотки на ротере
  2. не имеет щеток
  3. обмотки закладываются в позыв статора
  4. обмотка возбуждения виде 2-х кольцевых катушек расположенных в 2-х подшипниковых щетках
  5. ротер выполнен из равномерных расположенных рубцов
  6. три обмотки возбуждения:

-параллельные регулируется напряженение генератора в сети

– последовательные компенсируют реакции обмотки статера

– специальные- для облегчения автоматического регулирования напряжения генератора при малых нагрузках, при высоких скоростях вагонов..

Генератор работает в диапозоне от 650 до 2600 оборотов в минуту

В современных вагонах от 1000 до 4000 оборотов в минуту

ОСОБЕННОСТИ КОНСТРУКЦИИ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую
Генератор постоянного тока состоит:

Из неподвижной части статора , внутри которого закреплены полюсы (4шт) на концах установлены катушки обмотки возбуждения , они соединяться последовательно друг с другом и подключаются к РНГ (ре напряжение генератора). Внутри статора вращается якорь состоящий из вала, на который напрессован сердечник якоря , имеющий 25 пазов. В позы якоря уложена рабочая обмотка генератора , концы рабочей обмотки выведены на коллекторные пластины , с пластин коллекторных напряжение снимается с помощью графитовых щеток. Щетки расположены на поворотной траверсе , при изменения направления вращения валов генератора , щетки поворачиваются на 90 % , сохраняя тем самым неизменным полярности генераторов .ЭДС в рабочей обмотке возбуждения проводится за счет изменения магнитного потока.

Генератор запускается при скорости движения 40км в час
Реленапряжение сети освещения..

Генератор постоянного тока- нужно снимать специальными электрическими щетками

Преимущества:

-не нужен выпрямитель

– обмотка возбуждения на полюсах

Недостатки:

– потеря мощности на скользящем контакторе между щетками и коллектором.

– сложен в тех.обслуживании и ремонт генераторов

-низкая удельная мощность максимум мощность в 5 киловат.

Генератор- первичный источник, заряд батареи . отличаются по мощности мин – 5 киловат и максимум – 32.

Особенности конструкции вагонных ламп накаливания

Накаливания – повышенная виброустойчивость , специальный цоколь (софитный или штифтовый)

штыревой цоколь – это главная особенность вагонных ламп. Лампа накаливания не более 40 ватт. 50 и 110 вольт.

Технико-экономические показатели люминесцентных ламп

1.Сложность конструкций- сложная

2. Сложность ПРА –сложная

3. Цветность- естественный

4. Светоотдача- 35-37 люм на Вт

5. Срок службы- 5000ч

6. Ощущение- неблагоприятные

7. Пожароопасность- нет

8. Вредность – да

9. Боязнь перенапряжения- нет

10. Напряжение- 220V переменный

11. Род тока – переменный однофазный

12. Частота – от 400 до 5000Гц

13. Мощность – 20, 40 Вт

Кислотные АБ.

1. деревянные ящики – корпус.

2. эбонитовый бак.

3. карболитовые крышки.

4. положительные пластины – двуокись свинца Pb02 – темно коричневого цвета.

5. отрицательные пластины – губчатый свинец светло-серого цвета.

6. резьбовая пробка, в ней вентиляционные каналы.

7. соединительные шины (для последовательного соединения банок АБ).

8. Положительная и отрицательные клемы.

9. 25% раствор электролита чистой серной кислоты H2S04 дистилорованная вода.

Пример: 26 ВНЦ-400. 26 элементов на 52 В 56 элементов на 112 В.

В – вагонная Н – никело Ц – цинковая 400 – емкость в А/ч.

Нельзя допускать глубокий разряд, происходит сульфатация пластин (до 47 В, 102 В).

Щелочные АБ

1. положительные пластины;

2. отрицательные пластины;

3. стальной неразборный бак;

4. плюсовая и минусовая клейма;

5. заливное отверстие;

6. резьбовая пробка, в ней вентиляционные каналы;

7. резиновый изолирующий чехол;

8. эбонитовые палочки между “+” и “-” пластинами

9. раствор электролита 10% едкого калия с дистиллированной водой.

Пример: 40 ВЖН 300.

40 – количество банок (52 В)В – вагонные Ж – железно Н – никелевые 300 – емкость АБ в А/ч.

Щелочные АБ дешевле кислотных, обладают большей механической прочностью не выходят из строя в результате действия низких температур, имеют большой срок службы, не требуют такого тщательного как кислотные, вследствие этого щелочные батареи получают все большее распространение. Однако основные недостатки щелочных батарей является низкое КПД (отдача по энергии) и значительное их внутреннее сопротивление, большое количество банок 26 против 40.

Что собой представляет аккумуляторная батарея вагона:

Аккумуляторные батареи размещаются под вагоном в специальных ящиках, оборудованных вентиляцией для удаления взрывоопасной смеси, образующейся при заряде батареи.

Электролит: водный раствор КОН

Причинами взрыва АБ могут быть:неисправность вентиляции аккумуляторной батареи, наличие огня, не плотность контактов соединительных клемм, наличие “глухих” (короткозамкнутых) аккумуляторов

СКНБП (П- позисторная)

Наличие на электрощите дополнительная лампочка питания и вместо легкоплавкого сплава установлен полупроводниковый терморезистор…

В случаи неисправности электрической цепи срабатывает прерывистый сигнал.

В этом случае проводник не срывает стоп-кран, а вызывает ПЭМ или НЛП

При срабатывании постоянного сигнала СКНБП в независимости от местности срываем стоп-кран.Термодатчик в плавки и вставки расплавляется при t 83-93С

В случаи неисправности СКНБ ИЛИ СКНБП на стоянках более 5 минут проводник обязан проверить нагрев буксового узла

ЭЛЕКТРООБОРУДОВАНИЕ

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую.

Принцип работы генератора постоянного тока

При вращении якоря создается магнитный поток, который возбуждает электрический ток в катушках, после чего этот ток (постоянный!!) идет на потребление.

Постоянный возможен при электромагнитной индукции

Генератор постоянного тока- нужно снимать электрическими специальными щетками

Генератор постоянного тока- статер выполнен виде обмоточного возбуждения

Генератор запускается про скорости движения вагона-40 км в час..

При скорости 40км в час запускается генератор постоянного тока, напряжение генератора больше.

Преимущество. Сразу вырабатывает ток. Не нужен выпрямитель. Обмотка возбуждения на полюсах. Акк.батарея заряжается стабильное напряжение в сети, обеспечивается с помощью релегенератора напряжения (_освещение)

Последнее изменение этой страницы: 2016-09-19; Нарушение авторского права страницы

Читайте далее:
Ссылка на основную публикацию
Adblock
detector