Как сфазировать генератор с сетью - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как сфазировать генератор с сетью

Параллельная работа генераторов

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

Параллельная работа генераторов:

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.

Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.

Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:

Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:

Из векторной диаграммы рис. 4 для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:

Рис. 5. Кривые напряжения биений.

Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени (пунктирная кривая на рис. 5, б):

Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен

При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток

В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.

Активная составляющая уравнительного тока, как видно из векторной диаграммы на рис. 4, равна

Параллельная работа (синхронизация) дизель-генераторов

Дизельные электростанции широко используются для обеспечения резервными мощностями крупных и средних потребителей.

Также они находят применение в электроснабжении предприятий, находящихся в удалении от централизованных сетей. Такие установки комплектуются как минимум двумя агрегатами. Следовательно, должна быть обеспечена безаварийная параллельная работа этих дизель генераторов.

Производители предлагают к продаже большой ассортимент различных электромашин. Возникает вопрос, почему нельзя выбрать один агрегат и ограничиться этим? Дело в том, что набор требуемой мощности с помощью нескольких ДГУ имеет существенные преимущества:

  • Несколько небольших дизель-генераторов дешевле, чем одна крупная установка равной мощности.
  • Нагрузка предприятий очень редко является постоянной величиной. Чаще всего, ее значение меняется в два-три раза, в зависимости от того, ночь это или день. Поэтому, нерационально вырабатывать ресурс крупного (и дорогого) дизель-генератора, используя его то на треть от номинальной нагрузки, то загружая его на полную мощность.
  • Схема с несколькими агрегатами значительно надежнее, чем применение одного генератора. В случае выхода из строя одной из машин электростанции, потребители не останутся полностью без электроснабжения, чего нельзя сказать про одиночную ДГУ.
  • Если в составе нагрузки есть один или несколько больших двигателей со значительными пусковыми токами, без нескольких генераторов тоже не обойтись. При пуске обычно работают они все, а затем ненужная мощность отключается.
Читайте также:  Как проверить регулятор напряжения генератора мультиметром

Одним словом, дизель-генераторная электростанция — это дешевле, надежнее и удобнее, чем одиночный агрегат.

Распространенные схемы работы

Разумеется, каждая электростанция на основе ДГУ разрабатывается и комплектуется исходя из конкретных параметров нагрузки, которую нужно обеспечивать питанием:

  1. Максимальная мощность потребителей.
  2. Средняя мощность.
  3. Постоянная нагрузка или работа в резерве.
  4. Колебания нагрузки в течение суток.
  5. Величина пусковых токов оборудования.

Несмотря на это, существуют наиболее распространенные схемы построения станций, которые, в зависимости от типа требуемого электропитания делятся на следующие группы:

  • ДГУ автоматического ввода резерва (АВР). Вводится в строй в случае, если пропадает напряжение в централизованной сети электроснабжения.
  • Основной источник электроэнергии — мобильная установка или подстанция в удаленной местности.
  • Станция с периодическим наращиванием мощности — агрегаты включаются в случае недостачи электроэнергии или для обеспечения пусков больших двигателей.

Обеспечение синхронизации дизель генераторов

В теории, для того, чтобы несколько агрегатов работали одновременно (параллельно) на одну и ту же нагрузку, нужно обеспечить следующие условия:

  1. Одинаковая частота.
  2. Равные напряжения.
  3. Совпадает порядок чередования фаз.

Таким образом, нужно на выходных клеммах каждого генератора получить идеально совпадающие параметры напряжения, и только после этого запускать их параллельную работу.

Задача выглядит достаточно сложной, особенно учитывая тот факт, что необходимость включать агрегат в общую сеть может возникать до десятка раз в день, в зависимости от нужд потребителей.

Синхронизация может быть осуществлена двумя способами:

  • самосинхронизация;
  • точная синхронизация.

Рассмотрим оба способа, так как они практически одинаково часто применяются в обеспечении работы электростанций.

Самосинхронизация

«Холодный» генератор раскручивается двигателем до достижения номинальной частоты вращения. После этого агрегат подключается к сети и на обмотку возбуждения подается напряжение. Сеть сама «втягивает» агрегат в синхронную работу. Бросок тока в статоре, конечно, возникнет, но он будет небольшим, так как до включения в сеть в магнитной системе существует лишь остаточный магнетизм, который нарастает относительно медленно.

Этот способ достаточно несложен и позволяет без проблем автоматизировать процесс синхронизации. Разработано большое количество схем и устройств, в которых реализован именно этот метод.

Таким способом можно включать в сеть даже генераторы, мощность которых больше, чем мощность всех уже работающих агрегатов. Провал напряжения в сети невелик и не влияет на снабжение потребителей.

Точная синхронизация

Этот способ максимально приближен к теоретическому «идеальному» : генератор синхронизируется без малейших провалов напряжения в сети и бросков тока в обмотках агрегата. Подключиться таким образом к сети вручную — сложный технологический процесс, требующих точного измерительного оборудования. Последовательность действий должна быть следующей:

  1. Фазировка. Обычно выполняется в процессе монтажа генератора с помощью фазоуказателя.
  2. Обеспечение нужной частоты вращения. Проверяется с помощью частотомера.
  3. Достижение агрегатом действующего значения напряжения, совпадающего с напряжением сети. Контролируется вольтметром.
  4. Обеспечение полного совпадения векторов фазных напряжений агрегата с сетью с помощью синхроноскопа
  5. Включение генератора в сеть.

На современной дизель-генераторной электростанции синхронизировать агрегат вручную, конечно, нерационально. Поэтому применяют специальные контроллеры, которые после достижения генератором параметров, точно совпадающих с параметрами сети, подают сигнал на включение.

Параллельная работа в составе электростанции и распределение нагрузки дизель генераторов

После того, как генератор включен в общую сеть, он принимает на себя часть общей нагрузки. В случае, если электростанция состоит из нескольких одинаковых агрегатов, нагрузка делится между ними равномерно.

Пример работы двух резервных дизель-генераторов:

Если в параллельном режиме работают разные генераторы, необходимо, чтобы мощность, отдаваемая ими в сеть распределялась пропорционально их номинальным мощностям, иначе синхронизация дизель генераторов может быть нарушена. Увеличение или уменьшение части нагрузки, воспринимаемой конкретным агрегатом регулируется увеличением или уменьшением подачи топлива на соответствующий дизельный двигатель.

Устойчивость синхронной работы ДГУ

Самое главное требование к работе дизель-генераторной электростанции — параллельная работа агрегатов должна быть устойчивой. Общая устойчивость складывается из двух составляющих:

  • Статическая устойчивость. При небольших возмущениях в сети факторы, которые стремятся не допустить изменения синхронного режима, действуют сильнее, чем факторы, приводящие к возмущениям.
  • Динамическая устойчивость. При значительных отклонениях параметров сети от синхронных (вызванных внешним влиянием) система стремится к прежнему, синхронному состоянию, после окончания действия внешних факторов.

Оба составляющих устойчивой работы очень важны для стабильной работы электростанции. Современные системы синхронизации обычно автоматически отслеживают случаи выпадения из синхронизма агрегатов, производят восстановление режима работы, а если, по каким-то причинам это невозможно, аварийный генератор отключается.

Параллельная работа генераторов

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

Параллельная работа генераторов:

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.

Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.

Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:

Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.

Читайте также:  Как замерить напряжение на генераторе мультиметром

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:

Из векторной диаграммы рис. 4 для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:

Рис. 5. Кривые напряжения биений.

Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени (пунктирная кривая на рис. 5, б):

Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен

При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток

В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.

Активная составляющая уравнительного тока, как видно из векторной диаграммы на рис. 4, равна

Предварительная фазировка

Дополнительно по теме

ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ

КОСВЕННЫЕ МЕТОДЫ ФАЗИРОВКИ

ПРЕДВАРИТЕЛЬНАЯ ФАЗИРОВКА (ПРОВЕРКА ЧЕРЕДОВАНИЯ ФАЗ)

Проверка чередования фаз генератора.

Обмотки электрических машин переменного тока выполняют простыми (имеющими одну ветвь) и составными (имеющими две параллельные ветви в каждой фазе). Выводы обмоток маркируют по ГОСТ. Начала простых обмоток статора обозначают С1, С2, СЗ, концы – С4, С5, С6 соответственно. Выводы составных обмоток маркируют теми же буквами, что и выводы простых обмоток, но впереди прописных букв ставят цифры. Так, в случае двух обмоток на статоре выводы первой обозначают 1С1 – 1С4; 1C2-1C5; 1СЗ-1С6, выводы второй – 2С1-2С4; 2С2-2С5; 2СЗ-2С6. Выводы, подсоединяемые к сети, называют линейными, а соединяемые вместе в звезду – нулевыми. У генераторов с простыми обмотками линейными считают выводы от начал: C1, С2 и СЗ, у мощных генераторов с параллельными обмотками – выводы С4, С5, С6. В последнем случае нулевыми будут выводы C1, С2, СЗ. На рис. 19 показана схема обмотки статора турбогенератора ТВФ-100-2. Обмотка имеет девять кольцевых выводов – три линейных и шесть нулевых. Объединены выводы 1С1, 1СЗ, 1С2 и 2С1, 2СЗ, 2С2. Нейтрали соединены шинной перемычкой с установленным на ней трансформатором тока, предназначенным для включения поперечной дифференциальной токовой защиты от к. з. между витками в одной из фаз обмотки статора. Для фазировки генератора необходимо знать, какие его выводы являются линейными.

Рис. 19. Схема следования фаз и чередования обозначений выводов двухслойной обмотки статора турбогенератора ТВФ-100-2 (вид со стороны возбудителя).

Порядок следования фаз генератора зависит от направления вращения ротора и чередования фаз обмотки статора. Направление вращения ротора определяется по расположению лопаток на дисках турбины, а чередование фаз устанавливается визуально, когда статор монтируемого генератора находится на фундаменте. Для этого, начиная от линейных выводов, прослеживают места входа в пазы трех обмоток статора. Очередность, в которой расположены эти места по окружности статора, если обход вести в направлении вращения ротора, и определит собой действительное чередование фаз обмотки.

Подводка соединительных шин к генератору и их раскраска производятся в зависимости от установленного порядка следования фаз генератора и сети. При этом варианты возможного подсоединения монтируемого генератора приведены в табл. 1.

Установленный порядок следования фаз на линейных

Варианты соединения выводов генератора с фазами сети при порядке их следования А – В – С

Укажем, что все варианты подсоединения генератора равноценны и выбор того или другого определяется исключительно удобством прокладки соединительных шин от выводов к шинам действующего распределительного устройства. Если порядок следования фаз сети не прямой (А, В, С), а обратный (А, С, В), то в табл. 1 следует поменять местами буквы В и С.

Проверка чередования фаз синхронного компенсатора.

Проверка производится в процессе монтажа статора при снятых торцевых щитах аналогично описанному выше способу определения чередования фаз генератора. Проверкой устанавливают соответствие чередования фаз на выводах статора заданному направлению вращения ротора. Это важно для обеспечения нормальной циркуляции масла в подшипниках. При подсоединении выводов синхронного компенсатора к фазам сети руководствуются теми же соображениями, что и при подключении генератора.

Проверка чередования фаз силовых трансформаторов.

В соответствии с ГОСТ вводы у трансформаторов располагают так, чтобы чередование их (слева направо), если смотреть со стороны вводов высшего напряжения, было:

у трехфазных трансформаторов

у однофазных трансформаторов

Проследить, правильно ли подсоединены концы обмоток к соответствующим вводам без вскрытия трансформатора, не представляется возможным. Поэтому правильность обозначений вводов трехфазных трансформаторов и полярность вводов однофазных трансформаторов устанавливаются при проверке групп соединений, которая производится при монтаже и капитальном ремонте трансформаторов с частичной или полной сменой обмоток.

Проверка чередования фаз воздушных линий.

Сооружение новой воздушной линии электропередачи производится на основании проектной документации, содержащей среди прочих документов трехлинейную схему линии (по всей ее длине) с транспозицией проводов и заранее нанесенной расцветкой фаз. На этой схеме расположение проводов на ближайшей к линейному порталу ОРУ опоре предусматривают в том порядке, который обеспечил бы совпадение фаз линии с соответствующими фазами оборудования подстанции. Особое значение это имеет при прокладке новых линий между действующими подстанциями. Транспозиция проводов в этом случае выполняется с учетом фактического расположения оборудования и порядка чередования фаз на ОРУ с обоих концов линии.

Чтобы избежать ошибок при производстве монтажных работ на линиях, установлен порядок, при котором 32 организация, принимающая линию в эксплуатацию, обязана вести технический надзор за ее строительством в соответствии с проектной документацией.

Проверка чередования фаз новой линии состоит в том, что приемочная комиссия сверяет выполнение работ с имеющейся документацией. Особенно тщательно проверяется монтаж проводов на транспозиционных опорах и на подходах линии к подстанциям.

Проверка чередования фаз силовых кабелей. Простейшим способом отыскания в конце кабеля токоведущих жил, соответствующих определенным фазам его начала, является способ проверки (“прозвонки”) жил при помощи телефонных трубок, например при проверке силовых кабелей, прокладываемых между различными помещениями станций и подстанций.

Схема подсоединения телефонных трубок показана на рис. 20. В качестве одного из проводов для установления связи используют заземленные конструкции (заземленную металлическую оболочку кабеля), к которым подсоединяют телефонные трубки. Далее, с одной из сторон кабеля провод от батарейки соединяют с токоведущей жилой (допустим, фазой С), С другой стороны кабеля вторым проводом от телефонной трубки поочередно касаются токоведущих жил, каждый раз подавая голосом сигнал в трубку. Найдя жилу, по которой будет получен отзыв проверяющего, ее помечают как фазу С и в том же порядке продолжают поиск других жил. Вместо телефонных трубок в последнее время стали применять телефонные гарнитуры, которые освобождают руки проверяющих для работы.

Читайте также:  Как рассчитать мощность генератора для дачи

Рис. 20. Схема присоединения телефонных трубок при фазировке кабеля.

Для проверки чередования фаз достаточно широко используют мегаомметр, схема включения которого показана на рис. 21. Для фазировки поочередно заземляют жилы в начале кабеля, а в конце производят измерение сопротивления изоляции жил относительно земли.

Заземленную жилу обнаруживают по показанию мегаомметра, так как сопротивление ее изоляции на землю будет равно нулю, а двух других жил – десяткам и даже сотням мегаом.

Рис.21 Схема присоединения мегаомметра при фазировке кабеля.

При этом способе проверки трижды устанавливают и снимают заземления. Кроме того, персонал, находящийся по концам кабеля, должен иметь между собой связь, чтобы координировать свои действия. Все это относится к недостаткам такого способа проверки. Более совершенным является способ измерений по схеме, приведенной на рис. 22. Одну из трех жил кабеля (назовем ее фазой А) жестко соединяют с заземленной оболочкой, другую жилу (фазу С) заземляют через сопротивление 8-10 МОм. В качестве сопротивления обычно используют трубку с резисторами указателя УВНФ. Третью жилу (фазу В) не заземляют, она остается свободной. С другого конца кабеля мегаомметром измеряют сопротивление жил относительно земли. Очевидно, что фазе Л будет соответствовать жила, сопротивление которой на землю равно нулю, фазе С – жила, имеющая сопротивление на землю 8-10 МОм, и фазе В – жила с бесконечно большим сопротивлением.

Рис. 22. Схема присоединения мегаомметра и дополнительного сопротивления при фази-ровке кабеля.

Условия безопасности при производстве фазировки кабелей.

Фазировка производится только на отключенной со всех сторон кабельной линии. При этом должны быть приняты меры против подачи на кабель рабочего напряжения. Перед началом фазировки при помощи мегаомметра весь персонал, находящийся вблизи кабеля, предупреждается о недопустимости прикосновения к токоведущим жилам.

Соединительные провода от мегаомметра должны иметь усиленную изоляцию (например, провод типа ПВЛ). Присоединение их к токоведущим жилам производится после того, как кабель будет разряжен от емкостного тока. Для снятия остаточного заряда кабель заземляют на 2-3 мин.

Проверка чередования фаз силовых кабелей по расцветке изоляции жил.

Токоведущие жилы силовых кабелей с изоляцией из пропитанной бумаги расцвечивают навитыми на их изоляцию лентами цветной бумаги. Одну из жил, как правило, опоясывают красной лентой, другую синей, а изоляцию третьей специально не расцвечивают – она сохраняет цвет кабельной бумаги. При изготовлении кабелей жилы скручивают между собой так, что на протяжении одного шага скрутки каждая жила меняет свое положение в площади сечения, делая один оборот вокруг оси кабеля. Рассматривая площади сечений с обеих концов кабеля, можно обнаружить, что по отношению к наблюдателю фазы в сечениях чередуются в разных направлениях (рис. 23). Эти особенности конструкции кабелей учитывают при фазировке и соединении жил.

Рис. 23. Чередования фаз в сечениях кабеля. Стрелками показаны направления обхода фаз.

Допустим, что необходимо произвести фазировку и соединение жил двух концов трехфазного кабеля. Фазировка в данном случае элементарно проста. Она заключается в том, что из шести жил выбирают пары, имеющие одинаковую расцветку. Эти жилы замечают и готовят к 1 соединению. Для соединения необходимо, чтобы оси жил одинаковой расцветки совпадали, а направление чередования фаз в площади сечения одного конца кабеля было бы зеркальным отражением другого (рис. 24,а). При укладке кабелей в траншею вероятность совпадения осей жил невелика. Чаще всего фазы одного цвета оказываются повернутыми относительно друг друга на некоторый угол, значение которого может доходить до 180° (рис. 24,б). Кабели с несовпадающими осями одинаково расцвеченных жил при монтаже (или ремонте) подкручивают вокруг оси, пока не будет зафиксировано точное совпадение осей жил. Однако сильное подкручивание не безопасно. Оно вызывает механические напряжения в защитных и изоляционных покровах кабелей и влечет за собой снижение надежности в работе.

Для того чтобы по цвету совпали все соединяемые между собой жилы, направления чередований фаз в сечениях кабелей должны быть противоположными. Это проверяется, заранее, до укладки кабеля в траншею, если на его концах отсутствуют метки с указанием направления чередования фаз. Заметим, что у кабелей с чередованием фаз, направленным в одну сторону, по цвету совпадает только одна жила, а две другие не могут совпадать (рис. 24, в).

Рис. 24. Некоторые варианты чередования расцвеченных жил в сечениях двух кабелей.

а -соединение жил одинакового цвета возможно; б – то же после поворота сечения на 180°; в – соединение трех жил по их цветам невозможно.

Преимущество способа соединения кабелей одинаково расцвеченными жилами состоит в том, что фазировка здесь не является самостоятельной операцией, она выполняется в ходе самих работ, а процесс прокладки, ремонта и эксплуатации кабелей приобретает более стройную систему и требует меньших трудозатрат.

Электротехнический журнал

Электротехнический журнал. Статьи. Новости. Авторские публикации. Документы.

Content Header

Фазировка

Фазировка – согласование электрических фаз между собой по полярности и направлению чередования при подключении. Правильно сфазированные обмотки соединяются в звезду и треугольник. (См. Схемы электрических соединений нейтралей электрических машин). Под фазировкой, в обычном смысле слова, понимают подключение трёх-фазного источника питания к трёх-фазному потребителю, где принципиально важно соблюдение чередования фаз. Например, при неправильном подключении трёх-фазных электродвигателей, они начинают вращение в обратную сторону, что приводит к нарушению технологического цикла, в котором используются эти электродвигатели в качестве приводов.

Виды фазировки

  • Фазировка линии.
  • Фазировка трансформаторов.
  • Фазировка генераторов.
  • Фазировка кабеля.
  • Фазировка электродвигателя.

Фазировка электроаппарата (машины)

Фазировкой электроаппарата или электрической машины называют правильное соединение обмоток трёх-фазного электроаппарата между собой для обеспечения правильного функционала. Так, например, фазировкой системы освещения называют правильно сфазированное подключение осветительных приборов к трёх-фазной осветительной сети для обеспечения симметрии нагрузки, работы осветительного прибора на нужном уровне напряжения и т.д.

При сборе схемы подключения трёх-фазного генератора неправильная фазировка его обмоток между собой приведёт к тому, что токи между обмотками будут достигать значений близких к значениям токов короткого замыкания. Трехфазный генератор состоит из трёх разных обмоток, сдвинутых относительно друг друга на угол 120 градусов. Соответственно, для совместной работы их нужно сфазировать.

При подключении таких потребителей к трёхфазной сети, как ламп, электрических печей и другой активной нагрузки фазировка не важна. Однако, при подключении к трехфазной сети групп таких электроприборов следует выполнить некоторые мероприятия, которые можно отнести к фазировке. Так, при подключении линии освещения к трёхфазному источнику питания (трансформатору 10/0.4кВ, например) важно распределить нагрузку по фазам равномерно, иначе получится так называемый перекос мощности, который негативно сказывается на сети в целом, важно так же подключить осветительный прибор на фазное напряжение, так как при подключении их на линейное напряжение они попросту выйдут из строя.

Фазировка электроаппарата (машины) с сетью

Фазировкой самих обмоток электрических машин (фазировка выводов генератора, трансформатора и т.д.) далеко не исчерпываются задачи, стоящие при включении в сеть электрооборудования, так как правильно сфазированный сам аппарат или электрическую машину нужно еще сфазировать с сетью, к которой он или она присоединяется. Задача фазировки состоит в том, что нужно не только исключить короткие замыкания при соединении двух источников тока, но и не допустить между ними уравнительных токов, а в отношении электродвигателей — обеспечить необходимое направление вращения.

Для того чтобы изменить направление вращения электродвигателя, достаточно поменять местами на его зажимах любые две фазы. Действительно, для электродвигателя важно только направление вращения, а оно сохраняется при трех вариантах присоединения (a-a, b-b, c-c; a-b, b-c, c-a; a-c, b-a, c-b), но изменяется на обратное, если в любом из этих вариантов поменять местами любые две фазы.

Трансформаторы могут иметь равные вторичные напряжения, одинаковые группы соединения обмоток и, значит, могут работать параллельно, но они могут быть не сфазированы. Задача фазировки трансформаторов на параллельную работу состоит в том, чтобы их сфазировать их вывода “а” с “a”, “b” c “b” и “с” c “c”, иначе возникнет уравнительные ток, равный или близкий к току короткого замыкания.

Проверка фазировки

Проверку фазировки проводят:

  • Индикатором напряжения. При совпадении фаз одного напряжения, например А-А, потенциал между сфазированными фазами будет близок к нулю.
  • Вольт-ампер-фазометром. ВАФ (Вольт-ампер-фазометр) показывает угол в градусах между фазами. Соответственно, по векторной диаграмме можно определить совпадающие фазы.
  • Фазоуказателем. Фазоуказатель показывает направление вращения векторов трёхфазной системы. Применяется при фазировке электродвигателей. Фазоуказатель не показывает соответствие фаз.
Читайте далее:
Ссылка на основную публикацию
Adblock
detector