Дефекты кабеля для списания - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Дефекты кабеля для списания

Дефекты для списания кабеля

Незаводские дефекты — виды, причины

Причины незаводских дефектов силового кабеля могут быть следующие: — повреждения механического типа, которые могли быть нанесены при прокладке кабеля, при повторных его раскопках (к примеру, во время строительных работ там, где пролегают кабельные трассы); — спиралеподобные вспучины, либо трещины – такой дефект возникает, как результат довольно длительного воздействия периодов нагрева и охлаждения, а также значительных перегрузок кабеля выше допустимых норм; — под действием вибрации или сотрясения разрушаются межкристаллические структуры свинцовой оболочки; — разрушающее действие коррозии (химической, грунтовой), которые содержатся в почве; — блуждающие тока также действую разрушающе на оболочку кабеля.

Установка местных повреждений кабеля

Местные повреждения устанавливаются легко, так как это очень хорошо видно по внешнему виду.

К вопросу «Типы систем заземления» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов.

Устройство защитного отключения (УЗО) – это быстродействующая защита, реагирующая на изменение какого-либо параметра электрической цепи, информирующего о появлении опасности поражения электрическим током и отключающая электроустановку. [Подробнее!]

Новости за 2017 год

Непрерывное развитие народного хозяйства страны обуславливает высокие темпы роста объемов электромонтажных работ по сооружению новых, расширению, техническому перевооружению, реконструкции и техническому обслуживанию действующих электроустановок.

В раздел «Охрана труда в электроэнергетике» добавил вопрос «Плакаты и знаки безопасности». Приводится информация о том, какие существуют знаки и плакаты безопасности и для чего они применяются.

В конце вопроса приведен небольшой тест для проверки своих знаний. [Перейти!]

Добавлена информация о периодичности испытаний средств защиты применяемых в электроустановках, а также небольшой тест для проверки своих знаний по данной теме. [Перейти!]

К вопросу «Защитное зануление в электроустановках» добавлен небольшой тест. Если Вы хотите оценить уровень своих знаний, ответьте на несколько контрольных вопросов.

Одним из подготовительных этапов работ, предшествующих строительству воздушных линий электропередачи, является разбивка трассы линии.

Дефекты для списания кабеля

Целость ее спиралей можно проверить, взглянуть на ее торец через стекло баллона. Черный налет по концам говорит о расходовании активного слоя катодов Заменить лампу 5.Влияние пониженной температуры воздуха Изменение цвета сечения лампы Изменение состава люминофора при большом сроке службы лампы Заменить лампу Гудение светильника Колебание пластин магнитопровода дросселя Заменить дроссель Срабатывание защиты при включении светильника 1.Пробой компенсирующего конденсатора на входе светильника Заменить конденсатор 2.Замыкание в цепях установки Проверить цепи авометром Нагрев сгораемых поверхностей, на которых установлен светильник Нагрев дросселя светильника Поставить асбестовые подкладки под светильник или оставить воздушный промежуток под светильником

Лампы накаливания часто трудно вывернуть из патрона из-за того, что заржавел цоколь или приварился центральный контакт.

Дефекты кабеля для списания

Рассматривать предоставленную документацию они имеют право не больше 2-х недель.

Если члены комиссии не могут самостоятельно принять правильное решение по причине отсутствия у них определенных навыков, могут быть приглашены (по постановлению председателя) экспертные работники. Созываться они могут на возмездной либо добровольной основе.
В случае приглашения за определенную денежную сумму, работа будет оплачена финансами из бюджета, за счет собственных денежных средств или личных сбережений.

Экспертом не назначается человек, выполняющий трудовые обязанности, напрямую связанные с материальной ответственностью данного предприятия. Решение принимается большим количеством голосов.

Дефекты кабеля для списания в дефектных ведомостях

Во всех организационных случаях без официального обращения владельца МТ (т.е.

Здесь уже обижаться не на кого: не соблюдаешь правила – получи проблему.

ДЕФЕКТЫ УДЛИНИТЕЛЕЙ И СЕТЕВЫХ ФИЛЬТРОВ КАК ПРИЧИНЫ ДЛЯ СПИСАНИЯ

Дефектами (поломками / неисправностями) удлинителей и сетевых фильтров часто интересуются лица, ответственные за учёт / баланс имущества в различных организациях. Оформляя документы на списание вышедших из строя изделий, они раздумывают над формулировками причин поломки. Бумаги должны быть составлены так, чтобы нецелесообразность дальнейшей эксплуатации списываемого имущества не вызывала сомнений.

Пожалуй, с технической точки зрения мы дали исчерпывающую информацию о причинах возникновения неисправностей удлинителей и сетевых фильтров, а также изложили наше понимание ремонтопригодности и целесообразности ремонта (либо отсутствия таковой).

Новости и информация

Большинство несчастных случаев поражения электрическим током происходит в электроустановках до 1000 Вольт, в том числе в быту, где напряжение составляет 220 Вольт. Попасть под напряжение у себя дома человек может, как правило, либо при грубом нарушении правил безопасности, либо в результате повреждений квартирной электропроводки.

Познакомиться с причинами появления некоторых видов повреждений квартирной электропроводки и оценить степень опасности этих повреждений для человека можно прочитав материал, размещенный на сайте. [Читать!]

В процессе эксплуатации на кабель оказывает негативное влияние окружающая среда. При определенных условиях это может привести к разрушению металлических элементов кабеля.

Процесс разрушения металлических элементов кабеля в результате воздействия окружающей среды называют коррозией.

Поврежденная жила подключается к конденсатору через разрядник.

Установка заряжает конденсатор. Как только напряжение на нем превысит пробивное напряжение разрядника, происходит его пробой на поврежденную жилу.

В кабель устремляется акустическая волна, доходящая до места повреждения. В результате в нем возникает сильный звуковой эффект (щелчок).

Схема подключения для акустического метода поиска повреждения

Современные установки на выходе имеют контакторы, работающие от блока управления.

С его помощью задается как выходное напряжение, так и частота следования импульсов.

Для прослушивания акустических сигналов в месте повреждения используются пьезоэлектрические датчики, устанавливаемые на землю, или те же трассоискатели. Двигаясь по трассе и прослушивая сигнал, ищут место его максимума.

Наиболее эффективным решением в таком случае является восстановление бумажной изоляции вокруг токопроводящих жил и установка специальной муфты. Токопроводящие жилы при этом не разрезаются. Они полностью освобождаются от изоляции.

В этом месте кабель должен быть раскопан так, чтобы его можно было стянуть в направлении повреждения с каждой стороны для получения достаточного изгиба.

Это делается для того, чтобы стало возможно развести жилы в стороны и через промежутки между ними намотать на каждую из них несколько слоёв новой бумажной изоляции или аналогичной ей изоляционной ленты.

После восстановления изоляции на жилах они вновь сближаются примерно до таких же расстояний, как и в неповреждённом кабеле.

Отметим, что расчетные электрические градиенты в кабеле на напряжение 20-35 кВ выше приблизительно в два раза, чем в кабеле на напряжение в 6 кВ.

Именно из-за этого на вертикальных участках уже при незначительной степени осушения начинается ионизация воздушных включения, что ведет к частичным разрядам. Как правило, такие проблемы требуют замены вертикальных кабельных участков. Необходимость замены определяется путем рассечения, разборки и осмотра участка кабеля. Электрическое старение в запущенном варианте проявляется наличием ветвистых «побегов» черного цвета на бумажной ленте.

Дефекты токопроводящих жил

Стоит обращать внимание на такие дефекты токонесущих жил, как: — их неправильная круглая или секторная форма.

Повреждения кабельных линий

Основная масса электрических соединений потребителей электрической энергии с ее источниками выполняется кабельными линиями. Большая их часть прокладывается в земле, так как этот способ:

  • не требует сооружения громоздких и дорогостоящих металлоконструкций, портящих внешний вид;
  • обеспечивает защиту от доступа посторонних лиц (кроме несанкционированных земляных работ);
  • позволяет экономить длину кабелей, так как прокладка производится по кратчайшему расстоянию между источником и потребителем.

Но существуют и недостатки прокладки кабельных линий в земле.

До начала рытья котлованов под опоры определяют и отмечают на трассе воздушной линии места, где требуется разрабатывать грунт под котлованы, а также основные разбивочные оси: ось воздушной линии и оси траверс опор. Разбивку котлованов проводят теодолитом, стальной мерной лентой или стальной рулеткой. Разметку на трассе выполняют пикетными знаками, в качестве которых чаще всего используют деревянные колышки… [Читать далее!]

Добавил новый материал об изоляции воздушных линий электропередачи. Если Вы хотите познакомиться с типами изоляции ВЛ, узнать об их достоинствах и недостатках, перейдите по указанной ссылке.
[Перейти!]

Добавлена лабораторная работа по анализу опасности поражения человека электрическим током.

Процедура утилизации обязательна для всех организаций, фирм и учреждений. К ней относится переработка сырья и изготовление других материалов, повторно используя и изменяя их структуру.

Дело в том, что запчасти, входящие в состав компьютеров, разлагаются не один десяток лет: в их составе имеются микросхемы, имеющие в составе драгоценные металлы. Следует помнить, что нарушение норм утилизации попадает под статью 19.14 КоАП, и на виновных будут наложены штрафные санкции в сумме до 30000 руб.

Самостоятельно физические или юридические лица вывезти непригодные компьютеры на свалку не могут.
Дело в том, что управляющие организации не занимаются утилизацией компьютерной техники.

Наличие влаги и агрессивной среды, постепенное развитие замыкания по корпусу светильника, на которое не реагирует защита Заменить светильник Загорания провода 1.Изоляция провода не соответствует условиям среды Заменить провод, не соответствующий условиям среды 2.Замыкание в светильнике или проводе в отсутствие защиты Применить защиту (предохранители, автоматы) 3.Провод не соответствует нагрузке Заменить на провод большего сечения Установки с люминесцентными лампами Лампа не зажигается или работает с перерывами 1.Слабы или окислились зажимы в цепях до светильника, у дросселя, колодок лампы, у стартера; контакты ножек лампы и электродов стартера в гнездах Проверить зажимы и контакты в проводке до светильника и в светильнике 2.Обрыв в дросселе или в конденсаторе балластного сопротивления Проверить заменой на новые 3.Неисправен стартер Заменить 4.Неисправна лампа.

Типичные неисправности ИБП: писк, треск и перегрев

Многообразие конструкций источников бесперебойного питания не позволяет описать в одной статье все возможные неисправности ИБП и их причины. Однако существует список типовых проблем, характерных для всех устройств, независимо от мощности и конструктивных особенностей.

Простейшие типовые неисправности ИБП и методы их устранения обычно приводятся в прилагаемых инструкциях по эксплуатации.

Сложные нестандартные поломки можно диагностировать и устранить лишь в сервисном центре, располагающим специализированным оборудованием и мастерами с должной квалификацией.

Продукция APC, источники питания которой пользуются особенной популярностью на отечественном рынке, мало отличается в этом плане.

Повреждения кабельных линий, причины, классификация, методы поиска повреждений

После фиксирования факта повреждения кабеля, первоначально определяется предварительная зона, с последующим уточнением конкретного места и характера возможных дефектов.

Для этого применяют следующие методы дефектоскопии:

акустический. Применяется для определения повреждений непосредственно на трассе с помощью искусственно созданного акустического удара, с последующей его регистрацией соответствующими приборами;

индукционный. Основан на принципе детектирования радиосигнала, который возникает в месте пробоя изоляции при прохождении через кабель импульса частотой от 800 до 1000 Гц с силой тока 15-20 А;

емкостной. Позволяет определять с помощью соответствующих формул определить расстояние до места повреждения в том случае, когда происходит обрыв жил кабельных линий в соединительной муфте;

петлевой. Используется в случаях, когда у одной из неповрежденных токоведущих жил нарушена изоляция, в то время как с соседними неповрежденными проводниками сопротивление в месте повреждения не должно быть более 5 кОм. Место повреждения определяется путем дожигания специальной газовой установкой или кенотроном с последующим применением соответствующих методик;

импульсный. Предполагает использование специального прибора ИКЛ, который фиксирует интервал времени от посылки импульса вдоль кабеля до его отражения, с последующей обработкой результатов;

колебательный разряд. Используется для выявления пробоев изоляции, которые возникают в кабельных муфтах. Расстояние до места пробоя определяется с помощью подачи напряжения от кенотронного аппарата, с фиксацией результатов соответствующими приборами типа ЭМКС-58.

Основные причины повреждения кабельных линий

К главным недостаткам, которые существенно влияют на надежность кабелей, относятся такие показатели, как осущение , электрическое старение и высыхание изоляции. Это связано, прежде всего, с естественным разложением (кристаллизацией) пропиточного состава.

Проведение профилактических испытаний повышенным постоянным напряжением постоянного тока далеко не всегда позволяет выявлять не только естественное старение изоляции, но и другие, более существенные дефекты. В частности, такие исследования неэффективны, если изолятор в данный момент не отсырела. Поврежденный участок можно обнаружить лишь в том случае, если у оставшейся неповрежденной части изоляция не превышает 15-20 % .

Как правило, при аварии кабелю наносятся и вторичные повреждения (обжиг дугой, деформация за счет созданного внутреннего давления, поглощение влаги в поврежденном месте и т. д.).

Главным конструктивным элементом является внешняя оболочка, т. к. высокие диэлектрические характеристики силового кабеля обеспечиваются при отсутствии активного воздействия на него влаги и воздуха. Основной материал – свинец и алюминий.

Помимо заводского брака, который со временем может привести к повреждению кабеля, существуют и другие причины выхода его из строя:

— механические повреждения при прокладке или других строительных работах;

— вспучивание в виде спирали (иногда с образованием трещин) в результате воздействия в течение длительного времени периодических циклов нагревания и охлаждения, а также при значительных сетевых перегрузках;

— разрушение внешней оболочки под воздействием внешних механических факторов;

— естественная химическая коррозия из-за воздействия различных реагентов, содержащихся в почве;

— разрушение внешнего защитного слоя благодаря блуждающим токам от электрифицированного транспорта.

Визуально механическое повреждение наружной оболочки легко определяется по внешнему виду: как, правило, в этом случае деформирована как стальная броня, так и джутовая оплетка. При этом обычно резко снижаются и диэлектрические характеристики кабеля.

При локальных повреждениях делается специальная вставка, и линия готова к дальнейшей эксплуатации.

Свинцовая оболочка часто подвергается межкристаллическому разрушению, что визуально выражается в появлением на первом этапе сетки из мелких трещин. В дальнейшем это приводит к увеличению их размеров с последующим разрушением отдельных фрагментов.

При наличии в составе продуктов коррозии двуокиси свинца, можно смело утверждать о ее электрическом происхождении за счет блуждающих токов. Такой окисел имеет характерный коричневый тон. В то же время в результате химической коррозии образуются продукты белого цвета, которые иногда имеют бледно-желтый или бледно-розовый оттенок.

При монтаже муфт следует обратить особое внимание на влажность изоляторов, правильной укладке пропиточного материала и выделения необходимого объема канифоли.

Одним из самых слабых элементов изоляции являются воздушные включения. В них развиваются такие опасные процессы, как ионизация и частичные разряды. Именно с этим связано жесткое регламентирование совпадение бумажных лент. При несоблюдении этого регламента слой необходимой изоляции становится неустойчивым к изгибу.

В высоковольтных кабелях (20-35 кВольт) даже при незначительном нарушении изоляции из-за высокого напряжения начинается ионизация воздуха с появлением частичных разрядов.

При визуальном осмотре токопроводящих жил кабеля, прежде всего необходимо обратить внимание на такие характерные дефекты, как:

— неправильная форма секторной или круглой жилы;

— западание или, наоборот, выпирание отдельных элементов проволакивания;

— наличие заусениц на токопроводящих жилах.

Все эти дефекты способствуют искривлению напряженности электрического поля с образованием местных флуктуаций, что является уже серьезной проблемой при напряжении в сети более 10 кВольт.

Также возможны и другие, более грубые дефекты в жилах, которые могут быть связаны, в частности, что в результате неаккуратного проволакивания изоляция может быть повреждена механически. При этом могут быть и грубые дефекты в жилах, например, при возможных пересечениях в процессе укладки.

В такой ситуации токопроводящий провод может принять неправильную форму, а в изоляции возможно образование глубоких складок. Такой кабель нельзя использовать для прокладки.

При замене дефектных участков сети также необходимо учитывать весь комплекс изменений, который может возникнуть при горении дуги, а также образованию избыточных внутренних давлений.

Профилактические испытания , в связи с малой мощностью, не предполагают возникновение в сетевых сетях каких-либо дефектов.

Общая информация. Классификация повреждений кабеля.

Неизбежные материальные и финансовые потери, к которым приводит выход из строя кабельной линии (КЛ), заставляют искать наиболее эффективные, минимизирующие эти потери, способы устранения повреждений. Правильный выбор метода и оборудования для поиска мест повреждений определяют качество решения поставленной задачи, т.е. максимальную вероятность правильного определения места повреждения и минимальное время, затрачиваемое на это.

Причины появления дефектов в кабелях весьма разнообразны. Основные из них: механические или коррозионные повреждения, заводские дефекты, дефекты монтажа соединительных и концевых муфт, осушение изоляции вследствие местных перегревов кабеля и старение изоляции.

Наиболее важным является точное определение места повреждения кабельной линии, особенно в условиях города или в зимнее время, так как позволяет значительно сократить размеры вскрываемого асфальтодорожного покрытия или мерзлого грунта.

ОМП в кабельных линиях – это сложная взаимосвязанная система операций. Каждая операция позволяет решить конкретную задачу из всей процедуры определения места повреждения посредством использования определенного оборудования ООО «АНГСТРЕМ» .

Качество используемых для определения мест повреждения приборов, устройств и систем значительно облегчает работу персоналу, эксплуатирующему кабельные линии. Однако при большой плотности прокладки кабельных линий, что характерно для крупных городов, точное определение места повреждения на кабельной трассе под силу лишь специалистам – профессионалам, имеющим многолетний опыт определения повреждений кабельных линий.

Статьи, подготовленные специалистами нашей компании, раскроют общий подход к проблеме обнаружения и точного определения мест повреждений в кабельных линиях, с помощью профессионального оборудования «АНГСТРЕМ» и содержат конкретные рекомендации по методам поиска.

Классификация повреждений кабеля

По характеру поведения повреждения делятся на устойчивые и неустойчивые. В изоляции кабельных линий неустойчивые повреждения, в большинстве случаев, возникают вследствие специфических свойств бумажно-масляной изоляции. При ее пробое в разрядном промежутке создаются условия, способствующие гашению электрической дуги. Количество неустойчивых повреждений значительно превосходит количество устойчивых. Неустойчивые повреждения могут самоустраняться, оставаться неустойчивыми или переходить при определенных условиях в устойчивые.

По видам повреждения разделяются на замыкания (в сетях с изолированной нейтралью или компенсацией емкостных токов также «замыкания на землю») и обрывы. Замыкания делятся на однофазные (однополюсные) и междуфазные (двух- и трехфазные, как с «землей», так и без «земли»). Для сетей с изолированной нейтралью или компенсацией емкостных токов существенное значение имеют также двойные замыкания на землю, т.е. замыкания двух фаз на землю в разных точках электрически связанной сети.

Рис. 1 – Виды повреждений кабельных линий

Основные виды повреждений

Замыкание фаз на оболочку кабеля Rп 4
Rп ≤ 50
100 4
Rп ≤ 50
100 4
Замыкания между фазами Rп 10 6
Rп > 10 6
0 Rп 3
Заплывающий пробой Rп > 10 6

Хотите получать полезные методические материалы?

Дефекты кабеля для списания

.Как показывает опыт эксплуатации, много недостатков кабелей не определяются при профилактических испытаниях повышенным напряжением постоянного тока.

К таким недостаткам, которые значительно снижают надежность кабелей, относятся: осушение изоляции из-за перемещения или стекания пропиточного состава, электрическое старение изоляции, высыхание изоляции кабелей, работающих в тяжелых тепловых режимах, часто связанное с разложением пропиточного состава (кристаллизация) и т.д.

Не только старение, но и крупные дефекты не всегда выявляются при профилактических испытаниях. Не определяются повреждение в оболочках кабелей, если изоляция не отсырела. Повреждение и местные дефекты в изоляции могут быть обнаружены при испытании лишь в том случае, если оставшийся неповрежденный участок изоляции не превышает 15-20% ее толщины.

В момент аварии кабель часто получает вторичные повреждения (обжигается дугой, деформируется внутренним давлением, поглощает влагу через поврежденное место и т.д.).

Оболочка кабеля является одним из более важных конструктивных элементов силового кабеля. Изоляция кабеля может оставить высокие диэлектрические свойства только в том случае, если отсутствует возможность проникновения у нее воздуха или влаги.

Свинцова или алюминиевая оболочки являются герметизирующим покровом кабеля.

Длительная допустимая механическая нагрузка для свинца 0,1 кг/мм2, для алюминия 0,8 кг/мм2. В отличие от свинца алюминий является вибростойким материалом, но намного уступает ему в стойкости к действию грунтовой коррозии.

Кроме заводских дефектов, которые приводят к повреждениям кабелей имеются:

1) механические повреждения, которые были нанесены при прокладке или последующих раскопках и других строительных работах, выполняемых в зоне кабельных трасс;
2) спиралеподобные вспучины (иногда трещины) как результат длительного действия циклов нагрева и охлаждения или значительных перегрузок кабеля более допустимых норм.
3) межкристаллические разрушения свинцовой оболочки под действием сотрясений и вибраций.
4) грунтовая, химическая коррозия под воздействием разнообразных химических реагентов, которые содержатся в почве.
5) разрушение оболочек кабелей блуждающими токами электрифицированного транспорта;

Местные механические повреждения оболочек легко устанавливаются по внешнему виду, так как они сопровождаются повреждением джутовой оплетки и стальной брони. В большинстве случаев оказывается поврежденной и изоляция кабеля.

Механические повреждения носят локальный характер и после устранения поврежденного участка и монтажа вставки кабельная линия может продолжать быть в работе.

Межкристаллическое разрушение свинцовой оболочки – это рекристаллизация свинца, рост кристаллов и потеря связи между кристаллами. По внешнему виду в начальной стадии на оболочке появляется сетка мелких трещин. В последующем трещины все более увеличиваются и растрескивание оболочки сопровождается выпадением из нее групп кристаллов или даже отдельных кусков оболочки.

Масштаб межкристаллических разрушений (длина поврежденного участка кабеля) зависит от характера влияния, вызывающего сотрясения и вибрацию кабеля.

Чаще всего это вертикальный участок кабеля при переходе кабельной линии в воздушную, где сотрясения образуются проводами воздушной линии. Это могут быть участки кабелей на подходах к вращающимся машинам, создающие значительные вибрации, переходы кабельных линий под железнодорожными путями или шоссе, места прокладки кабелей по мостам, где вибрация и сотрясения создает двигающийся транспорт.

Наличие в продуктах коррозии перекиси (двуокиси) свинца указывает на ее электрическое происхождение от блуждающих токов. Характерным является цвет продуктов коррозии. Двуокись свинца, образуемая при протекании блуждающих токов имеет коричневый цвет (бурый осадок).

Продукты химической коррозии чаще всего имеют белый цвет, иногда с бледно-желтым или бледно-розовым оттенком.

При многократных изгибах кабеля, связанных из разматыванием, прокладкой, протяжкой в трубах и т.д., в местах возникших гофр алюминиевая оболочка дает продольную трещину или подрезается стальной бронелентой.

При установке муфт необходимо обращать внимание на состояние высыхания изоляции, разложения пропиточного материала и выпадения канифоли. У кабелей на напряжение 10 кВ и выше необходимо обращать внимание на электрическое старение изоляции и наличие у нее путей ионизации и частичных разрядов (ветвистые побеги, присутствие воскообразных веществ).

Воздушные включения – наиболее слабый элемент изоляции: в них начинают развиваться опасные ионизационные процессы и частичные разряды. Чем большие воздушные зазоры (особенно в радиальном направлении), тем они опаснее. В связи с этим жестко регламентировано количество допустимых совпадений бумажных лент. При большом количестве совпадений слой изоляции становится неустойчивым к выгибаниям. На бумажных лентах, расположенных под совпадающими зазорами (нижерасположенных лент), образуются продольные складки, которые под воздействием тепловых деформаций (нагревы и охлаждения кабеля) превращаются в продольные трещины, – такой же опасный дефект, как и совпадение бумажных лент.

Продольная складка нередко превращается в сплошную трещину, и при разборке изоляции кабеля вместо одной ленты сматываются две. Наиболее часто это наблюдается при величине перекрытия лент, близких до 50%.

При протекании токов короткого замыкания на очень короткое время (секунды) допускается подъем температуры жил (а, следовательно, и прилегающих слоев изоляции) к 125° или 200° соответственно для кабелей 20-35 кВ и 1-10 кВ.

Это обусловлено тем, что при температурах выше 135-140° в бумажнопропитанной изоляции быстро развиваются процессы необратимого старения бумажной основы изоляции (разрушение волокна целлюлозы, из которых состоит бумага).

Настолько же опасные и длительные аварийные перегрузки кабелей, когда нагрел жил и изоляции существенно превышает длительнодопустимые по нормам.

При вскрытии таких кабелей (после аварийного или профилактического пробоя) особенное внимание следует обращать на состояние фазной изоляции и бумажных лент, непосредственно примыкающих к жиле.

Опасные местные перегревы кабелей возможны в местах, где кабели проложены в земле с нарушением основных норм прокладки: с примыканием одного к другому или при выполнении в земле «запасов» в виде колец (запрещено правилами). В этих случаях, как установлено, кабели могут нагреваться к температурам, превышающих 100°.

В кабелях на напряжение 20-35кВ расчетные электрические градиенты приблизительно в два раза выше, чем в кабелях на 6 кВ. Потому уже при незначительном осушении, особенно на вертикальных участках, в них начинается ионизация воздушных включений и начинаются частичные разряды.

Необходимость замены вертикальных участков кабелей должна подтверждаться результатами рассечения, разборки и оглядел образцов кабелей.

Опасная степень электрического старения подтверждается наличием черных ветвистых побегов на бумажных лентах.

При обзорах токопроводящих жил кабеля необходимо обращать внимание на следующих наиболее часто встречающиеся дефекты:

– неправильную форму круглой или секторной жилы (например, один угол сектора острее, чем другой);
– выпирание или западание отдельных проволакиваний, пилообразный профиль жилы;
– наличие заусенцев на жилах.

Эти дефекты приводят к искривлению электрического поля, образованию местных повышенных напряженностей, что особенно опасно для кабелей на напряжение 10 кВ и выше. Жилы с отдельно выпирающими проволакиваниями или из заусенцами опасны в том отношении, что во время изгибов кабеля или при тепловых деформациях может быть смята, продавлена или разрезана примыкающая к жиле бумажная изоляция.

Наличие таких дефектов, значительно снижающих надежность кабеля, недопустимо.

Возможны и более грубые дефекты в жилах. Например, пересечение отдельных проволакиваний. В этом случае жила принимает неправильную форму, а в слое изоляции образуются глубокие складки. Кабели с такими дефектами не пригодны для прокладки.

При рассечении кабелей после аварийных пробоев следует учитывать ряд других изменений, связанных с горением дуги и образованием в кабеле значительных внутренних давлений.

Большим давлением может существенно деформироваться свинцовая оболочка кабеля, могут быть смещены и даже выброшены (вместе с газами) заполнители, смещенные бронеленты.
При профилактических испытаниях и пробоях, из-за малой мощности испытательных установок, такие деформации не возникают (прожигающая и ударная установки не учитываются).

Дефекты кабеля для списания

.Как показывает опыт эксплуатации, много недостатков кабелей не определяются при профилактических испытаниях повышенным напряжением постоянного тока.

К таким недостаткам, которые значительно снижают надежность кабелей, относятся: осушение изоляции из-за перемещения или стекания пропиточного состава, электрическое старение изоляции, высыхание изоляции кабелей, работающих в тяжелых тепловых режимах, часто связанное с разложением пропиточного состава (кристаллизация) и т.д.

Не только старение, но и крупные дефекты не всегда выявляются при профилактических испытаниях. Не определяются повреждение в оболочках кабелей, если изоляция не отсырела. Повреждение и местные дефекты в изоляции могут быть обнаружены при испытании лишь в том случае, если оставшийся неповрежденный участок изоляции не превышает 15-20% ее толщины.

В момент аварии кабель часто получает вторичные повреждения (обжигается дугой, деформируется внутренним давлением, поглощает влагу через поврежденное место и т.д.).

Оболочка кабеля является одним из более важных конструктивных элементов силового кабеля. Изоляция кабеля может оставить высокие диэлектрические свойства только в том случае, если отсутствует возможность проникновения у нее воздуха или влаги.

Свинцова или алюминиевая оболочки являются герметизирующим покровом кабеля.

Длительная допустимая механическая нагрузка для свинца 0,1 кг/мм2, для алюминия 0,8 кг/мм2. В отличие от свинца алюминий является вибростойким материалом, но намного уступает ему в стойкости к действию грунтовой коррозии.

Кроме заводских дефектов, которые приводят к повреждениям кабелей имеются:

1) механические повреждения, которые были нанесены при прокладке или последующих раскопках и других строительных работах, выполняемых в зоне кабельных трасс;
2) спиралеподобные вспучины (иногда трещины) как результат длительного действия циклов нагрева и охлаждения или значительных перегрузок кабеля более допустимых норм.
3) межкристаллические разрушения свинцовой оболочки под действием сотрясений и вибраций.
4) грунтовая, химическая коррозия под воздействием разнообразных химических реагентов, которые содержатся в почве.
5) разрушение оболочек кабелей блуждающими токами электрифицированного транспорта;

Местные механические повреждения оболочек легко устанавливаются по внешнему виду, так как они сопровождаются повреждением джутовой оплетки и стальной брони. В большинстве случаев оказывается поврежденной и изоляция кабеля.

Механические повреждения носят локальный характер и после устранения поврежденного участка и монтажа вставки кабельная линия может продолжать быть в работе.

Межкристаллическое разрушение свинцовой оболочки – это рекристаллизация свинца, рост кристаллов и потеря связи между кристаллами. По внешнему виду в начальной стадии на оболочке появляется сетка мелких трещин. В последующем трещины все более увеличиваются и растрескивание оболочки сопровождается выпадением из нее групп кристаллов или даже отдельных кусков оболочки.

Масштаб межкристаллических разрушений (длина поврежденного участка кабеля) зависит от характера влияния, вызывающего сотрясения и вибрацию кабеля.

Чаще всего это вертикальный участок кабеля при переходе кабельной линии в воздушную, где сотрясения образуются проводами воздушной линии. Это могут быть участки кабелей на подходах к вращающимся машинам, создающие значительные вибрации, переходы кабельных линий под железнодорожными путями или шоссе, места прокладки кабелей по мостам, где вибрация и сотрясения создает двигающийся транспорт.

Наличие в продуктах коррозии перекиси (двуокиси) свинца указывает на ее электрическое происхождение от блуждающих токов. Характерным является цвет продуктов коррозии. Двуокись свинца, образуемая при протекании блуждающих токов имеет коричневый цвет (бурый осадок).

Продукты химической коррозии чаще всего имеют белый цвет, иногда с бледно-желтым или бледно-розовым оттенком.

При многократных изгибах кабеля, связанных из разматыванием, прокладкой, протяжкой в трубах и т.д., в местах возникших гофр алюминиевая оболочка дает продольную трещину или подрезается стальной бронелентой.

При установке муфт необходимо обращать внимание на состояние высыхания изоляции, разложения пропиточного материала и выпадения канифоли. У кабелей на напряжение 10 кВ и выше необходимо обращать внимание на электрическое старение изоляции и наличие у нее путей ионизации и частичных разрядов (ветвистые побеги, присутствие воскообразных веществ).

Воздушные включения – наиболее слабый элемент изоляции: в них начинают развиваться опасные ионизационные процессы и частичные разряды. Чем большие воздушные зазоры (особенно в радиальном направлении), тем они опаснее. В связи с этим жестко регламентировано количество допустимых совпадений бумажных лент. При большом количестве совпадений слой изоляции становится неустойчивым к выгибаниям. На бумажных лентах, расположенных под совпадающими зазорами (нижерасположенных лент), образуются продольные складки, которые под воздействием тепловых деформаций (нагревы и охлаждения кабеля) превращаются в продольные трещины, – такой же опасный дефект, как и совпадение бумажных лент.

Продольная складка нередко превращается в сплошную трещину, и при разборке изоляции кабеля вместо одной ленты сматываются две. Наиболее часто это наблюдается при величине перекрытия лент, близких до 50%.

При протекании токов короткого замыкания на очень короткое время (секунды) допускается подъем температуры жил (а, следовательно, и прилегающих слоев изоляции) к 125° или 200° соответственно для кабелей 20-35 кВ и 1-10 кВ.

Это обусловлено тем, что при температурах выше 135-140° в бумажнопропитанной изоляции быстро развиваются процессы необратимого старения бумажной основы изоляции (разрушение волокна целлюлозы, из которых состоит бумага).

Настолько же опасные и длительные аварийные перегрузки кабелей, когда нагрел жил и изоляции существенно превышает длительнодопустимые по нормам.

При вскрытии таких кабелей (после аварийного или профилактического пробоя) особенное внимание следует обращать на состояние фазной изоляции и бумажных лент, непосредственно примыкающих к жиле.

Опасные местные перегревы кабелей возможны в местах, где кабели проложены в земле с нарушением основных норм прокладки: с примыканием одного к другому или при выполнении в земле «запасов» в виде колец (запрещено правилами). В этих случаях, как установлено, кабели могут нагреваться к температурам, превышающих 100°.

В кабелях на напряжение 20-35кВ расчетные электрические градиенты приблизительно в два раза выше, чем в кабелях на 6 кВ. Потому уже при незначительном осушении, особенно на вертикальных участках, в них начинается ионизация воздушных включений и начинаются частичные разряды.

Необходимость замены вертикальных участков кабелей должна подтверждаться результатами рассечения, разборки и оглядел образцов кабелей.

Опасная степень электрического старения подтверждается наличием черных ветвистых побегов на бумажных лентах.

При обзорах токопроводящих жил кабеля необходимо обращать внимание на следующих наиболее часто встречающиеся дефекты:

– неправильную форму круглой или секторной жилы (например, один угол сектора острее, чем другой);
– выпирание или западание отдельных проволакиваний, пилообразный профиль жилы;
– наличие заусенцев на жилах.

Эти дефекты приводят к искривлению электрического поля, образованию местных повышенных напряженностей, что особенно опасно для кабелей на напряжение 10 кВ и выше. Жилы с отдельно выпирающими проволакиваниями или из заусенцами опасны в том отношении, что во время изгибов кабеля или при тепловых деформациях может быть смята, продавлена или разрезана примыкающая к жиле бумажная изоляция.

Наличие таких дефектов, значительно снижающих надежность кабеля, недопустимо.

Возможны и более грубые дефекты в жилах. Например, пересечение отдельных проволакиваний. В этом случае жила принимает неправильную форму, а в слое изоляции образуются глубокие складки. Кабели с такими дефектами не пригодны для прокладки.

При рассечении кабелей после аварийных пробоев следует учитывать ряд других изменений, связанных с горением дуги и образованием в кабеле значительных внутренних давлений.

Большим давлением может существенно деформироваться свинцовая оболочка кабеля, могут быть смещены и даже выброшены (вместе с газами) заполнители, смещенные бронеленты.
При профилактических испытаниях и пробоях, из-за малой мощности испытательных установок, такие деформации не возникают (прожигающая и ударная установки не учитываются).

Читайте далее:
Читайте также:  Как обжечь алюминиевый кабель
Ссылка на основную публикацию
×
×
Adblock
detector