Допустимое падение напряжения в кабеле - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Допустимое падение напряжения в кабеле

Определение падения напряжения

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Расчет допустимой потери напряжения в кабеле от ТН до устройств релейной защиты

Требуется рассчитать сечение кабеля от вторичных цепей трансформатора напряжения (ТН) до микропроцессорных устройств.

Данный расчет сводится к расчету допустимой потери напряжения в кабеле от ТН до устройств релейной защиты.

Сечение и длина кабелей в цепях напряжения микропроцессорных устройств выбираются так, чтобы потери напряжения в этих цепях, составляли не более 3% номинального напряжения (при классе точности трансформаторов напряжения 0,2; 0,5), согласно ПУЭ раздел 3.4.5 пункт 2.

Для микропроцессорных устройств на напряжение 100 В согласно описанию типа на микропроцессорные терминалы Сириус, потребляемая мощность составляет Sab= Sbc=Sac=0,5 ВА.

Поскольку присоединения 110 кВ в некоторых рабочих режимах могут переводиться на одну из секций шин, то количество терминалов в измерительной цепи принимается равным максимально возможному – 10 шт., а длина цепей напряжения – максимально протяженной – 220 м (от трансформатора напряжения 1 СШ-110 кВ 1ТН-110).

Читайте также:  Провод медный гибкий изолированный многожильный

Исходные данные для расчета приведены в таблице 1.

Таблица 1 – Исходные данные для расчета кабеля.

№№
пп
Наимено-
вание присоеди-
нения
Длина кабеля от ТН до терминала L, мДопустимая потеря напряжения ∆Uдоп, %Потребляемая мощность терминала при напряжении 100В, ВАЛинейное номинальное напряжение, Uном., ВКоличество терминалов, шт
1ПС110/35/6 «Радуга» 1ТН-11022030,510010

1. Определяем ток нагрузки для вторичных цепей, питающихся от трансформаторов напряжения соединенных в звезду:

  • Sтн – наибольшая нагрузка на трансформатор напряжения, ВА;
  • Uном. – линейное номинальное напряжение, равное 100 В.

2. Определив ток нагрузки, рассчитываем допустимое сопротивление одной жилы кабеля в фазном проводе:

где:
∆Uдоп – допустимая потеря напряжения, для устройств релейной защиты равна 3В, согласно ПУЭ.

3. Определяем сечение жил кабеля:

  • L- длина кабеля от ТН до терминала, м;
  • γ – удельное сопротивление (равное 57 для меди и 34,5 для алюминия);

По условию механической прочности принимаем минимальное сечение кабеля равное 1,5 мм2 для меди, согласно ПУЭ раздел 3.4.4.

4. Определяем сопротивление выбранного кабеля:

5. Определяем потерю напряжения с учетом выбранного сечения кабеля:

Результат: Выбираем кабель марки КВБбШвнг (согласно ПУЭ раздел 3.4.11)-7х1,5 мм2

  • Трансформаторы напряжения и их вторичные цепи. В.Н.Вавин. 1977 г.
  • Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008 г.
  • ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Для защиты электродвигателей 0,4 кВ используются автоматические выключатели с встроенными в них.

В данной статье речь пойдет о расчете собственных емкостных токов для различных присоединений в сети 6(10).

В данной статье речь пойдет о расчете сопротивлений для трехобмоточного трансформатора с учетом.

В данной статье будет рассматриваться пример расчета уставок асинхронного двигателя с прямым пуском.

В данном примере будет рассмотрен расчет дифференциальной защиты асинхронного двигателя на реле.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Заметки инженера-электрика

Проектирование систем электроснабжения

22 января 2011 г.

Потеря напряжения в системе электроснабжения

  • от шин ТП до ВРУ – 5% (380 В);
  • от шин ТП до н.у. лампы ЭО – 7,5% (370 В);
  • от шин ТП до н.у. ЭП – 9% (364,8 В).
  • н.у. лампы ЭО не более 2,5%, из них
    • р.л. до ЩО – 0,5%,
    • гр.л. до н.у. ламп ЭО – 2%.
  • н.у. ЭП не должны превышать 4%, из них
    • р.л. до ЩР – 2%,
    • линии до н.у. ЭП – 2%.
  • эл.двигателя, РЭА и спец.оборудования – по паспорту, но не более 15%.
  • для цепей напряжения счетчиков учета электроэнергии – 0,5% (РМ-2559).

  • на вводе в здание от 368/214 В (-3%) до 400/230 В (+5%)
  • на сборке н/н в ТП: от 380/220 В (Uном) до 400/230 В (+5%)
  • на шинах 6 кВ ТП (РТП): от 6 кВ (Uном) до 6,6 кВ (+10%)
  • на шинах 10 кВ ТП (РТП): от 10 кВ (Uном) до 10,6 кВ (+6%)

Приложение G (справочное)
Падение напряжения в установках потребителей
Максимальное значение падения напряжения
Падение напряжения между источником питания и любой точкой нагрузки не должно быть больше, чем значения в таблице G.52.1, выраженные относительно значения номинального напряжения установки.
Таблица G52.1 – Падение напряжения

Значения округлены до целых чисел

ГОСТ 32144-2013 (EN 50160:2010, NEQ) ( ранее ГОСТ Р 54149-2010 )

Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
4.2.2 Медленные изменения напряжения
. установлены следующие нормы: положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10 % номинального или согласованного значения напряжения.

Комментарии :
Новости ЭлектроТехники, Суднова В.В., Карташев И.И., Тульский В.Н., Козлов В.В.:
Допустимые отклонения напряжения в точках передачи электроэнергии, 2013, № 4(82);
Диапазоны отклонений напряжения в точках передачи электроэнергии, 2014, № 2(86).

Автор блога: Утраченные в ГОСТ 32144 термины «нормально допустимые» и «предельно допустимые» (см. ГОСТ 13109) ассоциируются с нормальным и послеаварийным режимами работы, но их не исключают.

Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ТКП 45-4.04-326-2018 (взамен ТКП 45-4.04-149-2009 и ТКП 45-4.04-86-2007) (Беларусь)
Системы электрооборудования жилых и общественных зданий. Строительные нормы проектирования
9 Схемы электрических сетей
9.14 В электрической сети потребителя электроэнергии должны быть обеспечены условия, при которых отклонения напряжения питания на зажимах электроприемников не превышают установленных для них допустимых значений при выполнении требований ГОСТ 32144.
В нормальном режиме работы при загрузке силовых трансформаторов в ТП, не превышающей 70 % от их номинальной мощности, допустимые (располагаемые) суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленного светильника общего освещения в жилых и общественных зданиях, учитывающие потери холостого хода трансформаторов и потери напряжения в них, приведенные ко вторичному напряжению, не должны превышать 7,5 % относительно номинального напряжения электроустановки. При этом потери напряжения в электроустановках внутри зданий от ГРЩ (ВРУ) до наиболее удаленных светильников общего освещения не должны превышать 3 % от номинального напряжения, для светильников постановочного освещения — 5 %, до прочих электроприемников — 5 %.
При длине электропроводки от ГРЩ (ВРУ) здания до электроприемника более 100 м указанные потери напряжения допускается увеличивать на 0,005 % на каждый последующий (более 100) метр электропроводки, но не более чем на 0,5 %, за исключением максимально допустимых значений потерь напряжения, указываемых изготовителями для специального оборудования (например, рентгеновских аппаратов, томографов и других установок).
Отклонение напряжения допускается:
— в пусковых режимах для электродвигателей и другого электрооборудования с высокими пусковыми токами — до ±15 % при условии, что изменение напряжения будет оставаться в пределах, определяемых технической документацией на соответствующее электрооборудование, и будет обеспечиваться устойчивая работа пусковой аппаратуры;
— в послеаварийном режиме при наибольших расчетных нагрузках — до ±10 %;
— в осветительных сетях сверхнизкого напряжения (считая от источника питания, например понижающего трансформатора) — до ±10 %.

  • СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий.
  • СН 357-77 Инструкция по проектированию силового и осветительного электрооборудования промышленных предприятий.
  • НТП 1994 (взамен СН 174-75). Проектирование электроснабжения промышленных предприятий.
  • НТП 1996 (взамен СН 357-77 в части освещения). Проектирование осветительных электроустановок промышленных предприятий. Внутреннее освещение.
  • НТП 1999 (взамен СН 357-77 в части силового оборудования). Проектирование силовых электроустановок промышленных предприятий.
  • ТКП 45-4.04-297-2014 (02250). Электроснабжение промышленных предприятий. Правила проектирования.
  • ТКП 45-4.04-296-2014 (02250). Силовое и осветительное оборудование промышленных предприятий. Правила проектирования.

Проектирование кабельных сетей и проводок. Под общей редакцией Г.Е. Хромченко. М.: Энергия, 1980. См. гл. 2-7 “Отклонение и потери напряжения в сетях” на стр. 75.

Электроснабжение сельского хозяйства. Авторы: И.А. Будзко, Т.Б. Лещинская, В.И. Сукманов. М.: “Колос”, 2000. См. гл. 5 “Электрический расчёт сельский сетей” ( И.А. Будзко ):
5.3. Расчёт электрических сетей по потере напряжения, с. 90-150;
5.4. Регулирование напряжения в сельских электрических сетях, с. 150-156.

Пособие по проектированию городских и поселковых электрических сетей (к ВСН 97-83)/Гипрокоммунэнерго, МНИИТЭП.-М.: Стройиздат, 1987.
5. Расчёты электрических сетей, см. Расчёт потерь напряжения и мощности в кабельных и воздушных линиях и трансформаторах, с. 71-81; Проверка сети на отклонения напряжения, с. 82-85.


Вам нужно 220 В +-5%? & Хорошая статья по потере (падению) U

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

Смотрите также другие статьи :

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Расчет сетей по потерям напряжения

Потребители электрической энергии работают нормально, когда на их зажимы подается то напряжение, на которое рассчитаны данный электродвигатель или устройство. При передаче электроэнергии по проводам часть напряжения теряется на сопротивление проводов и в результате в конце линии, т. е. у потребителя, напряжение получается меньшим, чем в начале линии.

Понижение напряжения у потребителя по сравнению с нормальным сказывается на работе токоприемника, будь то силовая или осветительная нагрузка. Поэтому при расчете любой линии электропередачи отклонения напряжений не должны превышать допустимых норм, сети, выбранные по току нагрузки и рассчитанные на нагрев, как правило, проверяют по потере напряжения.

Потерей напряжения Δ U называют разность напряжений в начале и конце линии (участка линии) . ΔU принято определять в относительных единицах — по отношению к номинальному напряжению. Аналитически потеря напряжения определена формулой:

где P — активная мощность, кВт, Q — реактивная мощность, квар, ro — активное сопротивление линии, Ом/км, xo — индуктивное сопротивление линии, Ом/км, l — длина линии, км, U ном — номинальное напряжение, кВ.

Значения активного и индуктивного сопротивлений (Ом/км) для воздушных линий, выполненных проводом марки А-16 А-120 даны в справочных таблицах. Активное сопротивление 1 км алюминиевых (марки А) и сталеалюминевых (марки АС) проводников можно определить также по формуле:

где F — поперечное сечение алюминиевого провода или сечение алюминиевой части провода АС, мм 2 (проводимость стальной части провода АС не учитывают).

Согласно ПУЭ («Правилам устройства электроустановок»), для силовых сетей отклонение напряжения от нормального должно составлять не более ± 5 %, для сетей электрического освещения промышленных предприятий и общественных зданий — от +5 до — 2,5%, для сетей электрического освещения жилых зданий и наружного освещения ±5%. При расчете сетей исходят из допустимой потери напряжений.

Учитывая опыт проектирования и эксплуатации электрических сетей, принимают следующие допустимые величины потери напряжений: для низкого напряжения — от шин трансформаторного помещения до наиболее удаленного потребителя — 6%, причем эта потеря распределяется примерно следующим образом: от станции или понизительной трансформаторной подстанции и до ввода в помещение в зависимости от плотности нагрузки — от 3,5 до 5 %, от ввода до наиболее удаленного потребителя — от 1 до 2,5%, для сетей высокого напряжения при нормальном режиме работы в кабельных сетях — 6%, в воздушных— 8%, при аварийном режиме сети в кабельных сетях – 10 % и в воздушных— 12 %.

Считают, что трехфазные трехпроводные линии напряжением 6—10 кВ работают с равномерной нагрузкой, т. е что каждая из фаз такой линии нагружена равномерно. В сетях низкого напряжения из-за осветительной нагрузки добиться равномерного ее распределения между фазами бывает трудно, поэтому там чаще всего применяют 4-проводную систему трехфазного тока 380/220 В. При данной системе электродвигатели присоединяют к линейным проводам, а освещение распределяется между линейными и нулевым проводами. Таким путем уравнивают нагрузку на все три фазы.

При расчете можно пользоваться как заданными мощностями, так и величинами токов, которые соответствуют этим мощностям. В линиях, которые имеют протяженность в несколько километров, что, в частности, относится к линиям напряжением 6—10 кВ, приходится учитывать влияние индуктивного сопротивления провода на потерю напряжения в линии.

Для подсчетов индуктивное сопротивление медных и алюминиевых проводов можно принять равным 0,32—0,44 Ом/км, причем меньшее значение следует брать при малых расстояниях между проводами (500—600 мм) и сечениях провода выше 95 мм2, а большее — при расстояниях 1000 мм и выше и сечениях 10—25 мм2.

Потеря напряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

где первый член в правой части представляет собой активную, а второй — реактивную составляющую потери напряжения.

Порядок расчета линии электропередачи на потерю напряжения с проводами из цветных металлов с учетом индуктивного сопротивления проводов следующий:

1. Задаемся средним значением индуктивного сопротивления для алюминиевого или сталеалюминевого провода в 0,35 Ом/км.

2. Рассчитываем активную и реактивную нагрузки P, Q.

3. Подсчитываем реактивную (индуктивную) потерю напряжения

4. Допустимая активная потеря напряжения определяется как разность между заданной потерей линейного напряжения и реактивной:

5. Определяем сечение провода s, мм2

где γ — величина, обратная удельному сопротивлению ( γ = 1/ro — удельная проводимость).

6. Подбираем ближайшее стандартное значение s и находим для него по справочной таблице активное и индуктивное сопротивления на 1 км линии ( ro, хо ).

7. Подсчитываем уточненную величину потери напряжения по формуле.

Полученная величина не должна быть больше допустимой потери напряжения. Если же она оказалась больше допустимой, то придется взять провод большего (следующего) сечения и произвести расчет повторно.

Для линий постоянного тока индуктивное сопротивление отсутствует и общие формулы, приведенные выше, упрощаются.

Расчет сетей п остоянного тока по потерям напряжения.

Пусть мощность P, Вт, надо передать по линии длиной l, мм, этой мощности соответствует ток

где U — номинальное напряжение, В.

Сопротивление провода линии в оба конца

где р — удельное сопротивление провода, s — сечение провода, мм2.

Потеря напряжения на линии

Последнее выражение дает возможность произвести проверочный расчет потери напряжения в уже существующей линии, когда известна ее нагрузка, или выбрать сечение провода по заданной нагрузке

Расчет сетей однофазного переменного тока по потерям напряжения.

Если нагрузка чисто активная (освещение, нагревательные приборы и т. п.), то расчет ничем не отличается от приведенного расчета линии постоянного тока. Если же нагрузка смешанная, т. е. коэффициент мощности отличается от единицы, то расчетные формулы принимают вид:

потери напряжения в линии

а необходимое сечение провода линии

Для распределительной сети 0,4 кВ, питающей технологические линии и другие электроприемники лесопромышленных или деревообрабатывающих предприятий, составляют ее расчетную схему и расчет потери напряжения ведут по отдельным участкам. Для удобства расчетов в таких случаях пользуются специальными таблицами. Приведем пример такой таблицы, где приведены потери напряжения в трехфазной ВЛ с алюминиевыми проводами напряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

где Δ U — потеря напряжения, В, Δ U табл — значение относительных потерь, % на 1 кВт•км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт•км.

Ссылка на основную публикацию
Adblock
detector