Блок защиты для светодиодных ламп 220в - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Блок защиты для светодиодных ламп 220в

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» – это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um – максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Читайте также:  Почему перестали работать колонки на компьютере

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Блок защиты для светодиодных ламп 220В

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:

  • Скачки напряжения;
  • наведённая пульсация;
  • паразитарная пульсация.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни. Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов.

Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Блок защиты для светодиодных ламп 220в

Ваш город Москва

  • УСЛОВИЯ РАБОТЫ
    • Компания «Lederon» крупный поставщик светодиодной техники. Рады сотрудничеству:
      • с дилерами по дилерскому соглашению;
      • с клиентами, при минимальном заказе на светодиодную технику
        от 25 000 руб.

Работаем в июне в обычном режиме!

Готовы решать Ваши задачи. Звоните!

Трансформаторы для светодиодных лент

В связи с тем, что светодиодное освещение занимает все большую часть светотехнического рынка, попеременно с этим возникает немаловажный вопрос обеспечения светодиодных лент трансформаторами. Если катушечный трансформатор уже встроен в блок питания светодиодных лент, то прибор можно эксплуатировать незамедлительно. В ином случае перед потребителем возникает вопрос выбора и приобретения понижающего трансформатора, который обеспечит необходимый постоянный ток светодиодам и защитит их от скачков напряжения в сети.

Каталог трансформаторов (блоков питания):

Какие трансформаторы лучше использовать для светодиодов

Не все светодиодные световые приборы рассчитаны на питание от сети 220 В. Например, наиболее востребованные лампы работают от источника питания с напряжением 12 или 24 В и не смогут функционировать без дополнительного подключения трансформатора.

Если для галогенных светильников не имеет значения, какой трансформатор к ним подключить – работающий на постоянном или переменном токе, то для светодиодов подходит только постоянный ток.

В настоящее время для светодиодного освещения разработаны специальные трансформаторы, которые способны обеспечить постоянное равномерное напряжение на выходе. С ними светодиодные лампы, смогут излучать стабильно ровный пучок направленного света. В крайнем случае допустимо использование обычного электромагнитного или электронного трансформатора для светодиодных лент. Однако при этом вам придется дополнительно подключать стабилизатор для светодиодной ленты или смириться с тем, что лампа будет периодически мигать.

Подключение светодиодной лампы при помощи обычного трансформатора

Светодиоды с маркировками MR16, MR11 или G4, как правило, неплохо светят, если их подключить к любому блоку питания, обеспечивающему напряжение 12 В. С электромагнитными катушечными трансформаторами обычно не возникает сложностей, в то время как электронные для успешной работы нуждаются в дополнительных условиях. Электронным трансформаторам для светодиодных лент нужна более чем минимальная нагрузка, а при небольшой мощности диодов это обеспечить не так просто. Приходится прибегать к некоторым ухищрениям вроде добавления к сети еще некоторого количества светодиодных или каких-либо других светильников.

Специальные трансформаторы для светодиодных светильников

Как уже было отмечено выше, большинство светодиодов, использующихся для осветительных приборов, нуждается в постоянном токе напряжением 12 В. Подключать напрямую светильники к сети 220 В категорически запрещено – оборудование выйдет из строя.

Читайте также:  Почему не морозит холодильник причины

При выборе трансформатора для светодиодных лент нужно обратить внимание на характеристики: суммарная мощность, напряжение и герметичность корпуса. Такие трансформаторы рассчитаны на работу в разных температурных условиях, обеспечивают безопасную работу светильников.

Электронные трансформаторы торговых марок Bioledex или Relco, разработанные специально для светодиодных светильников и лент, обладают достаточной защитой от внешних воздействий и необходимыми техническими возможностями, благодаря которым ваше световое оборудование сможет исправно служить долгие годы.

Блок питания для светодиодного светильника

Независимо от того, проектируете ли вы свой собственный светодиодный светильник, модернизируете существующие светильники или приобретаете новые светодиодные светильники, вам нужно будет найти правильный Блок питания для светодиодного светильника. Вам понадобится Блок питания светодиодный драйвер или источник постоянного напряжения (или их комбинация), чтобы ваши светодиоды работали правильно. При выборе Блока питания для светодиодного светильника необходимо учитывать множество факторов. Мы обсудим все факторы и поможет вам выбрать правильный источник питания для ваших светодиодов!

p, blockquote 1,0,0,0,0 –>

p, blockquote 2,0,0,0,0 –>

Как выбрать блок питания для светодиодного светильника?

ПЕРВОЕ … Убедитесь, что у вас есть контроль тока на светодиодах

p, blockquote 3,0,0,0,0 –>

Для большинства светодиодов требуется ограничивающее ток устройство (будь то драйвер или резисторы), чтобы предотвратить превышение тока светодиодов. Этот резистор постоянного тока или резистор с ограничением тока используется для регулирования тока на светодиодах, что позволяет им работать в безопасности и максимизировать их срок службы. Электрические характеристики светодиодов меняются по мере их нагрева(читайте нашу статью про температуру светодиодов); если ток не регулируется, светодиоды будут потреблять слишком много тока с течением времени. Это превышение тока приведет к изменению яркости светодиода, что приведет к высокой внутренней теплоте, что в конечном итоге приведет к сбою светодиода. Если вы строите свой собственный светодиодный светильник или работаете с любым из наших светодиодов компонентов, вам понадобится постоянное устройство в вашей системе. Большинство готовых светодиодных продуктов или светодиодных полосок (которые вы покупаете прямо из магазина) уже имеют драйверы или резисторы, встроенные для регулирования тока. Если вы не уверены, нужен ли вам источник постоянного тока, посмотрите на это полезный пост, чтобы узнать.

p, blockquote 4,0,0,0,0 –>

Источники постоянного напряжения

Источник питания постоянного напряжения может использоваться для питания светодиодных ламп, которые имеют резисторы или драйверы постоянного тока уже в системе. Эти типы продуктов обычно требуют питание от постоянного напряжения. Вам понадобится Блок питания для светодиодного светильника для преобразования сети переменного напряжения в безопасное постоянное напряжение для ваших источников света. Например, светодиодные ленты (Читайте нашу статью как подключить светодиодную ленту) имеют встроенные ограничители тока (как вы можете видеть встроенный в основании светодиодной ленты). Если вы хотите установить это в своем автомобиле, вам не понадобится блок питания. Батареи автомобилей выделяют 12 В постоянного тока. Питание 12 В от аккумулятора будет полностью адекватным для ваших источников света. Но для того, чтобы включить эти светодиодные ленты в домах, необходим преобразователь переменного тока в постоянный ток, который будет потреблять стандартное бытовое напряжение 220 В переменного тока и преобразовывать его в 12 В / 24 В постоянного тока.

p, blockquote 5,0,0,0,0 –>

p, blockquote 6,0,0,0,0 –>

Какими характеристиками должен обладать блок питания для светодиодного светильника?

Таким образом, вам нужен Блок питания для светодиодного светильника на постоянное напряжение, который может преобразовывать ваше бытовое напряжение переменного тока в безопасное постоянное напряжение. Есть много вещей, которые влияют на поиск правильного источника питания для ваших нужд. Во-первых, мы должны заблокировать требуемую мощность от источника питания.

p, blockquote 7,0,1,0,0 –>

Мощность.

Чтобы начать, узнайте, сколько ватт потребляет ваш светильник. Если вы надеетесь запустить более одного светильнка от одного источника питания, вы должны суммировать мощность, чтобы найти общее количество потребляемых ватт. Удостоверьтесь, что у вас достаточно большой источник питания, давая себе 20% -ный запас над общей мощностью, которую вы рассчитываете на своих светодиодах. Это можно легко сделать, умножив общую мощность на 1,2, а затем найдя источник питания, рассчитанный на эту мощность.

p, blockquote 8,0,0,0,0 –>

Скажем, например, у нас есть 4 линии светодиодных полосок, которые работают примерно на 12 ватт каждый. Простое их умножение покажет, что наша мощность системы должна быть около 48 Вт. Теперь мы можем добавить 20% рекомендуемую подушку с 48 х 1,2 = 57,6 Вт. Для этого проекта достаточно 60-ваттного (или более высокого) источника питания.

p, blockquote 9,0,0,0,0 –>

Напряжение / Ток.

При создании светодиодного светильника или замене неисправного Блока питания для светодиодного светильника важно сначала убедиться, что выходное напряжение совместимо со светодиодом. Светодиодные продукты со встроенными регуляторами тока обычно будут довольно хорошими в определении того, какое входное напряжение должно использоваться. Например, источник питания 12 В будет использоваться с нашими светодиодными лентами, поскольку это то, что им требуется.

p, blockquote 10,0,0,0,0 –>

Другим распространенным приложением является использование светодиодов высокой мощности с постоянными токовыми драйверами, для которых требуется входное напряжение постоянного тока. Скажем, у нас есть шесть светодиодов Cree, которые выходят из драйвера. Каждый светодиод работает примерно на 3,1 вольта. С четырьмя из них наше общее напряжение в этой серии будет составлять 18,6 В постоянного тока. Как правило, драйверы низкого напряжения, работают лучше, если у вас есть небольшой запас над требуемым напряжением. Для этой настройки я бы использовал источник питания, выводящий по крайней мере 24 В постоянного тока. Обратите внимание, что вы всегда должны убедиться, что используемый Блок питания для светодиодного светильника низкого напряжения рассчитан на правильное напряжение, которое вы хотите ввести.

p, blockquote 11,0,0,0,0 –>

Кроме того, убедитесь, что выбранный источник питания может обрабатывать входную мощность, которая у вас есть. Линейное напряжение будет меняться в зависимости от того, где вы находитесь в мире. Убедитесь, что вы знаете, есть ли мощность переменного тока (90-120 В переменного тока) или сетевое питание переменного тока (200-240 В переменного тока). Многие источники питания, такие как продукты Mean Well, будут рассчитаны на весь диапазон, но всегда полезно знать ваш вход переменного тока и следить за тем, чтобы источник питания, который вы используете, подходит для этого.

p, blockquote 12,0,0,0,0 –>

Регулируемый блок питания для светодиодного светильника

Если вы хотите регулировать яркость, и вы хотите настроить их яркость, убедитесь, что вы выбрали источник питания, который имеет возможности диммирования. В спецификациях источника питания следует указать, является ли Блок питания для светодиодного светильника диммируемым или нет, и какой тип управления диммером он использует. Я кратко рассмотрю два типа управления:

p, blockquote 13,0,0,0,0 –>

p, blockquote 14,1,0,0,0 –>

PWM Dimming: также известный как широтно-импульсной модуляции, может использоваться на всех источниках питания. Даже Блок питания для светодиодного светильника не являющийся диммируемым по спецификации, может быть регулируемым через настенные или дистанционные диммеры PWM. Это связано с тем, что диммеры PWM идут в линию с полосками, затемняя на стороне 12 В постоянного тока цепи. Диммеры PWM фактически подают импульсы на высоких частотах, чтобы изменить восприятие света невооруженным глазом. Чем выше частота, тем ярче они будут.

p, blockquote 15,0,0,0,0 –>

TRIAC Dimming: этот тип затемнения позволяет освещать светодиоды стандартными диммерами. Вы должны убедиться, что источник питания подходит для регулировки яркости переменного тока (TRIAC), проверяя спецификации. Эти источники питания работают путем изменения мощности на стороне переменного тока схемы через диммер TRIAC. Изменение мощности, создаваемой диммером на стороне входа переменного тока, будет варьировать напряжение на выходе постоянного тока и регулировать яркость светодиодов. Диммеры TRIAC можно найти в обычных магазинах. Наиболее популярными / узнаваемыми брендами будут Lutron и Leviton.

Читайте также:  Аккумуляторы для дома при отключении электричества

p, blockquote 16,0,0,0,0 –>

Температура и погода

Важным фактором, который нельзя игнорировать при выборе Блока питания для светодиодного светильника, является область и окружающая среда, в которых он будет использоваться. Источники питания работают наиболее эффективно, если они используются в их температурных параметрах. Спецификации Блока питания для светодиодного светильника должны включать безопасный диапазон рабочих температур. Лучше всего работать в этом и не задерживать Блок питания для светодиодного светильника где-нибудь там, где тепло может накапливаться и превышать эту максимальную рабочую температуру. Как правило, это плохая идея вставить блок питания в крошечный корпус без системы вентиляции. Это позволит даже минимальное количество тепла, создаваемого источником, со временем нарастать и в конечном итоге готовить источник питания. Поэтому убедитесь, что область не слишком теплая или холодная, и что тепло не может нарастать до уровня повреждения.

p, blockquote 17,0,0,0,0 –>

Каждый светодиодный источник питания также имеет рейтинг защиты от проникновения (IP). IP-рейтинги состоят из двухзначного кода, который указывает размер твердых веществ и давление жидкостей, которые могут сопротивляться источнику питания. Первое число относится к размеру твердых веществ, которые может выдерживать устройство, тогда как второе число относится к количеству жидкости, которое может выдерживать устройство.

p, blockquote 18,0,0,0,0 –>

Эффективность Блока питания для светодиодного светильника говорит о том, какая мощность действительно направлена ​​на то, чтобы светодиод загорелся. Чем выше процентная доля энергопотребления, тем больше энергии вы в итоге сохраняете. Для светодиодных светильников рекомендуется выбрать источник питания с КПД 80% или выше. Ознакомьтесь с источниками питания Mean Well для наиболее эффективного выбора, так как они имеют рейтинги эффективности, хорошо работающие на 90 процентов.

p, blockquote 19,0,0,0,0 –>

Размер

При выборе Блока питания для светодиодного светильника для вашего светодиодного проекта важно знать, где он должен быть установлен или установлен. Если вы хотите поместить Блок питания для светодиодного светильника внутрь продукта, который вы делаете, он должен быть достаточно мал, чтобы вписаться в предоставленное пространство. Если он находится вне светильника, у него должен быть способ установить соединение. Существуют различные источники питания, предлагаемые в разных размерах и формах в соответствии с вашими потребностями.

p, blockquote 20,0,0,0,0 –>

p, blockquote 21,0,0,1,0 –>

Класс 1 или Класс 2?

Легко путать эти два рейтинга, поэтому давайте убедимся, что у нас есть все это сейчас, когда мы приближаемся к пониманию источников питания светодиодов. Источник питания класса 2 соответствует ограниченным уровням мощности, определенным Национальным электрическим кодексом (NEC), и соответствует требованиям стандарта UL 1310. Источники питания класса 2 ограничены 60 В постоянного тока и 100 Вт. Поскольку их мощность ограничена, источники питания класса 2 не могут подавать столько светодиодов, сколько другие за пределами рейтинга. Здесь вы должны определить, хотите ли вы использовать большую мощность от одного источника питания или придерживаться безопасности источника питания класса 2, который защищен от пожара и поражения электрическим током.

p, blockquote 22,0,0,0,0 –>

Оценка класса защиты от поражения электрическим током II на самом деле просто означает, что входные и выходные провода имеют двойную изоляцию. Блок питания для светодиодного светильника класса II популярнее, так как они не требуют подключения к заземлению.

p, blockquote 23,0,0,0,0 –>

Найдите лучший Блок питания для светодиодного светильника

Надеюсь, этот пост помог вам найти правильный Блок питания для светодиодного светильника. Существует множество вариантов выбора, поэтому найдите время и выберите тот, который лучше всего подходит для вашей ситуации, и имеет требование безопасности и был рассчитан на длительное время. Если вы ищете место для начала, я бы очень рекомендовал Mean Well Power Supplies , это авторитетный бренд с большим количеством светодиодных Блоков питания для светодиодных светильников и расходных материалов с фантастическими гарантиями.

Лампы на 12 или 220 В: что лучше использовать для освещения квартиры?

С появлением галогеновых и светодиодных ламп напряжением 12 В у многих появился вопрос: какие лампы лучше, на 12 В или на 220 В? Поскольку светодиодные лампы наиболее экономичные и долговечные, в данной статье мы рассмотрим плюсы и минусы изделий разных напряжений на их примере.

Долгие годы мы пользовались светодиодными, галогеновыми и лампами накаливания с рабочим напряжением в 220 В. Однако с появлением низковольтных изделий напряжением 12 В встал закономерный вопрос: какие лампы лучше, на 12 В или на 220 В? Мы рассмотрим плюсы и минусы использования ламп разного напряжения, и для примера возьмем светодиодные модели.

Cветодиодные лампы на 12 В: за и против

Преимущества ламп 12 В

  • Безопасность. Благодаря пониженному напряжению можно не боятся поражения электрическим током. Это дает возможность использовать лампочки в помещениях с повышенной опасностью, таких как котельные. Например, можно ставить светодиодные лампы капсульного типа Foton Lighting G4.
  • Можно использовать в помещениях с повышенной влажностью. Например, их можно устанавливать в ванных комнатах, саунах, помещениях с бассейном и даже на улице.

  • Не нужна дополнительная защита для проводки. Низкое напряжение не требует дополнительных мер защиты электропроводки, например, применения гофрированных трубок или кабель-каналов.

Недостатки ламп 12 В

  • Необходимость использования трансформатора или блока питания. Для подключения низковольтных лампочек к сети 220 В нужен понижающий трансформатор (как вариант — отдельный блок питания). Стоимость такого трансформатора от 300 до 3000 рублей в зависимости от производителя. Плюс нужно найти место, куда его установить. При выходе из строя трансформатора перестанет работать и вся сеть освещения, подключенная через него.
  • Потребление более высокого тока. Чем ниже напряжение, тем больший ток потребляет устройство. Для ламп на 12 В нужен более высокий ток, чем для изделий напряжением 220 В, поэтому проводка для осветительной группы должна быть выполнена проводом не менее 1,5 мм 2 с минимальным количеством скруток.

12-вольтовые светодиодные лампы нашли широкое применение при организации точечных светильников в подвесных и натяжных потолках. Также они отлично подходят для освещения витрин, выставочных стендов, помещений магазинов и кафе. Например, создать уютную атмосферу можно с помощью лампочек софитовой формы Navigator.

Светодиодные лампы на 220 В: за и против

Преимущества ламп 220 В

  • Простота монтажа. Для таких лампочек не нужен блок питания или понижающий трансформатор. Достаточно просто вкрутить в люстру или бра и пользоваться. Такая лампа имеет несколько светодиодов и драйвер.
  • Всегда доступны. Лампы со стандартным цоколем можно купить в любом хозяйственном магазине.
  • Есть модели для точечного освещения. Например, лампа Wolta 25S с цоколем GU 5.3 и подобные ей идеально подойдут для подвесного потолка. Также они будут отлично работать в ванной комнате или кухне, где повышенная влажность. Для них не нужен импульсный блок питания.

Недостатки ламп 220 В

  • Небольшой срок службы. Мы уже писали, что в дешевых некачественных лампочках плохо организовано отведение тепла из цоколя, где расположен драйвер, из-за чего он быстро сгорает. В целом замечено, что 220-вольтовые лампы перегорают чаще 12-вольтовых.

  • Опасность поражения током. В сравнении с 12 В опасность напряжения в 220 В значительно выше. Хотя стоит отметить, что в домашних условиях при правильной эксплуатации люстр, точечных светильников и других осветительных приборов, попасть под напряжение можно крайне редко.

Если не хотите заморачиваться с монтажом понижающего трансформатора или установкой блока питания, смело берите обычные светодиодные лампочки на 220 В. А в ванной комнате или сауне используйте защитные плафоны.

Вывод

Если вы хотите организовать точечное освещение в подвесном потолке в ванной комнате, можете взять 12-вольтовые светодиодные лампочки с блоком питания. Они отлично выдерживают влажность, и такое напряжение более безопасное.

Если не готовы заморачиваться с дополнительными комплектующими, берите обычные светодиодные лампочки на 220 В. Для организации точечного освещения можно взять изделия софитовой формы соответствующей цветовой температуры.

Что еще стоит знать про светодиодные лампы:

Ссылка на основную публикацию
Adblock
detector