Блок защиты галогенных ламп своими руками - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Блок защиты галогенных ламп своими руками

Выбор, монтаж и подключение блока защиты ламп от перепадов напряжения в сети

Чаще всего лампочка перегорает при включении, когда нить накаливания еще не разогрелась и ей присуще небольшое сопротивление. Чтобы избежать такого развития событий, придумано аппаратное устройство — блок защиты ламп (его еще называют устройством плавного пуска). Главная задача блока — предотвратить ущерб, причиняемый лампочке в результате скачков напряжения в сети.

Причины перегорания ламп

Лампы накаливания функционируют согласно принципу термоэлектронной эмиссии. При попадании тока в спираль она нагревается, в результате чего продуцируется свет видимой части спектра. Причем мощность тепловыделения обратной пропорциональна диаметру проводника. Вследствие этого утончившиеся участки спирали накаляются очень быстро, что приводит к потере их прочности. Именно истонченные места являются слабым звеном, где и происходит перегорание.

Обратите внимание! К перегоранию ламп приводят не только перепады напряжения, но и такие явления, как наведенная и паразитарная пульсация.

Галогенные лампочки также склонны к перегоранию в результате скачков напряжения. Имеется у таких источников света особенность, присущая только им, — склонность к перегреванию. Чрезмерно разогретая лампочка может перегореть в любой момент.

В защите нуждаются не только лампы накаливания и галогенные светильники, но и светодиодные лампы. На первый взгляд это выглядит странно, ведь у светодиодов отсутствует спираль, и свечение кристалла возникает в результате возбуждения электронов, а не разогревания спирали. Однако в основе принципа действия светодиодов также имеется термоэлектронная эмиссия. По прошествии нескольких лет полупроводниковый участок выгорает и, если присмотреться к ЛЕД-лампе, на ней заметны тусклые кристаллы с пробитым слоем полупроводника.

Принцип работы блока

Блок защиты запускается последовательно с прибором освещения и ограниченно пропускает электричество. Увеличение тока осуществляется постепенно — в течение 1–2 секунд. Без блока ток поступает мгновенно, что часто приводит к перегоранию лампы.

Устройство блока простейшее. Для его функционирования не имеют значения вход-выход, фаза-земля, а также полярность. Устройство следует подключать в последовательном режиме с выключателем, установленным в разрыв фазы.

Прибор плавного включения позволяет:

  1. Избежать негативного влияния перепадов напряжения при подключении светильника.
  2. Стабилизировать ток в лампочках после воздействия на них пускового электричества.
  3. Продлить срок службы источника света.

Немаловажный плюс защитного прибора состоит в том, что он предотвращает мигание лампы. Благодаря этому находиться в освещенном помещении комфортно, так как на глаза не оказывается чрезмерной нагрузки.

Установка и подключение

Монтаж защитного блока обычно осуществляется на потолке, то есть там, где закреплены приборы освещения. Если лампочка не единственная, устройство плавного пуска устанавливают до первого источника света.

Также блоки размещают в монтажных коробах под переключателем света. Однако следует иметь в виду, что для размещения блока в монтажной коробке существует ограничение: максимальная мощность устройства не должна превышать 300 Вт.

Обратите внимание! Какое бы место для установки блока ни было выбрано, к устройству должен быть обеспечен беспрепятственный доступ для проведения ремонтных работ.

Типичная схема подключения блока показана на рисунке ниже.

В случае с переключателем с подсветкой параллельно блоку подключают резистор. Уровень сопротивления для резистора должен находиться в пределах 33–100 кОм, а мощность — не превышать 2 Вт.

Для ламп на 12 вольт также необходим блок защиты. При использовании электромагнитного трансформатора блок ставят в разрыв первичной обмотки. Для электронного трансформатора понадобится специальный блок с четырьмя вводами.

Уровень мощность блока выбирается исходя из суммарной мощности всех потребителей. При этом необходим некоторый запас мощности, обычно в пределах 50% от номинала всех приборов освещения.

Для нормальной работы защитного блока необходимо его охлаждение. Чтобы добиться поступления воздуха, в корпусе создают специальные отверстия.

Меры предосторожности

При перегорании лампочки происходит размыкание нити накаливания, что ведет к короткому замыканию. Вследствие этого существует опасность выхода из строя защитного блока. Чтобы не допустить этого, выполняют следующие действия:

  1. Защитное устройство устанавливают на максимально доступном участке (подрозетник или щиток). До потолочного блока добраться будет значительно сложнее.
  2. Устанавливают по выделенному автоматическому выключателю на каждую линию. Номинальный показатель выключателя подбирается с небольшим запасом, поскольку перепады тока при данном варианте подключения не принимаются во внимание.
  3. Не допускается установка защитного блока в помещениях с повышенным уровнем влажности.

Выбор защитного блока

При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора — мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:

  • «Feron» (КНР);
  • «Camelion» (КНР);
  • «Шепро» (Россия);
  • «Гранит 1000», «Гранит 500» (Беларусь);
  • «Композит» (Россия);
  • «Вжик» (совместное производство России и Китая).

Самые популярные модели выпускаются компаниями «Feron» и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от компании «Feron» считаются не слишком качественными. Для них характерны следующие недостатки:

  • просадки напряжения, что нарушает работу светильника;
  • мигание лампы при подключении и в процессе функционирования;
  • регулярные помехи;
  • среднее качество пайки;
  • экономия на материалах, из которых изготовлен блок.

Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» — более высокую, чем у китайских производителей.

Изготовление блока защиты

Схема плавного подключения к сети лампы накаливания довольно проста. Однако в ходе изготовления блока своими руками следует принимать во внимание некоторые технические нюансы. Также нужно соблюдать нормативные акты, касающиеся электротехнических приборов. В качестве примера ниже приведена схема, по которой работает самостоятельно изготовленный блок защиты.

На схеме, изображенной выше, показано плавное включение лампы накаливания. Причем полярность в расчет не принимается. Прибор подключается в разрыв фазы, чтобы создать последовательное подключение с переключателем. Последний должен быть одноклавишным.

При создании блока также необходимо учитывать такие обстоятельства:

  1. Полевой транзистор в начале работы прибора должен быть закрыт. Данный элемент принимает напряжение стабилизации, так как он включен в диагональ диодного моста.
  2. Конденсатор С1 получает заряд при прохождении напряжения по резистору R1 и диоду VD1 до достижения уровня 9,1 В. Данный уровень является предельным благодаря ограничивающему действию стабилитрона.
  3. Когда напряжение доходит до нужного уровня, транзистор понемногу открывается, что приводит к возрастанию тока и сокращению напряжения на стоке. Далее начинается плавный нагрев нити накаливания лампочки.
  4. Для нормального запуска необходим второй резистор, так как он дает возможность разрядки конденсатора после выключения электропитания светильника. В этот момент напряжение на стоке небольшое — порядка 0,85 В при силе тока около 1 Ампера.

Блок будет работать как в сетях со стандартным напряжением 220 В, так и при пониженном напряжении.

Приборы плавного пуска дают возможность существенно увеличить рабочий ресурс лампочек. Однако их установка сопряжена с соблюдением технических регламентов и требует хотя бы минимальных познаний в электротехнике. Если таковых не имеется, для выполнения монтажа лучше пригласить профессионала.

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

Читайте также:  Последовательное и параллельное соединение розеток

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» – это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um – максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Схема блока защиты галогенных ламп Feron

Блок защиты галогенных ламп Ферон

Здравствуйте, уважаемые читатели моего блога! Недавно я публиковал материал, в котором рассказывалось про выбор и подключение блока плавного включения ламп (блока защиты). В качестве одного из вариантов такого устройства был описан блок защиты галогенных ламп фирмы Feron.

Несмотря на свои недостатки и нестабильность работы по сравнению с белорусским блоком защиты Гранит, устройство Feron широко применяется как дополнительная “фишка” при монтаже ламп освещения.

Читайте также статью по установке и подключению точечных светильников, в которых широко применяются галогеновые лампы

В этой статье я опубликую фотографии устройства и электрическую схему блока защиты галогенных ламп Feron. В качестве примера взята модель Feron Pro11 мощностью 500 Вт.

Итак, еще раз, что представляет из себя это электронное устройство.

Устройство блока защиты

Конструкция блока защиты ламп – вид снизу

Вскрываем блок, видим очень простое конструктивно устройство, в состав которого входит печатная плата, на которой присутствует мощный управляющий симистор на радиаторе, и пластиковый корпус с прорезями для естественного охлаждения. Вот блок защиты ламп в разборе:

Читайте также:  Почему мороженое не замерзает в морозилке

Разобранный блок защиты Ферон PRO11

Схема электрическая блока защиты ламп

Так выглядит схема электрическая блока плавного включения ламп, собранная на плате:

Электронная плата блока Ферон PRO11

Основа электронной схемы – PIC-контроллер, в который зашита программа управления силовым элементом – симистором. В разных моделях блока защиты встречаются контроллеры PIC12C508 и PIC12C509. Выбор варианта микросхемы контроллера никак не влияет на характеристики устройства, и видимо зависит только от наличия конкретных микросхем на заводе-изготовителе. Корпус – PDIP, 8 выводов.

Такие же контроллеры, но только в корпусе SOIC-8, применяются в блоках защиты ламп Гранит.

Даташит контроллера можно скачать прямо с блога SamElectric:

• PIC12C5XX / 8-Bit CMOS Microcontroller, pdf, 665 kB, скачан: 1516 раз./

Итак главное, ради чего собственно затевалась эта статья – схема блока защиты ламп галогенных ламп Feron:

Схема электрическая блока защиты галогенных ламп Feron

Принцип действия схемы блока защиты вкратце таков. При включении выключателя освещения блок защиты представляет собой разрыв, поскольку симистор закрыт. Соответственно, на выводы блока Х1 и Х2 подается питающее напряжение сети 220 Вольт.

Напряжение питания контроллера – постоянное, около 5 В – подается на выводы питания 1 (VDD) и 8 (VSS). Ограничение питающего напряжения обеспечивается цепью R1 – R2, выпрямление – диодом D1, фильтрация – электролитическим конденсатором С1, стабилизация – стабилитроном D2.

Как только напряжение питания достигает необходимого уровня, контроллер начинает работать с частотой тактовых импульсов, равной 50 Гц. Импульсы (если это можно назвать импульсами, но для работы цифровой схемы нужны именно импульсы) поступают через резистор большого сопротивления из питающей сети.

Контроллер выдает управляющее напряжение на управляющий электрод симистора через резистор R5. Симистор по заданной программе открывается, пропуская ток через цепь лампы, лампа плавно разгорается. Так происходит плавное включение.

В моделях блока защиты галогеновых ламп Ферон применяется совершенно одинаковая электрическая схема. И поскольку блоки отличаются только мощностью, единственное отличие – мощность (максимальный ток) симистора.

Какие симисторы применяются для какой мощности блока:

  • BT134 (BT136) 600E – симистор на ток до 4 А, напряжение 600 В – мощность нагрузки 150 Вт;
  • BT136 600E – 6 А, блок на 300 Вт
  • BT137 600E – 8 А, блок на 500 Вт
  • BT138 (BT139) 600E – 12 А (16А), блок на 1000 Вт

Даташиты с параметрами и схемами включения на эти симисторы:

• Симисторы для диммеров BT136-BT139 / Даташиты, pdf, , скачан: 12566 раз./

Ремонт блоков защиты

Что касается ремонта блоков защиты, прежде всего выходит из строя именно этот симистор. Желательно при замене выбирать симистор на бОльший ток. Подробнее по неисправностям и ремонту – в статье по ремонту диммеров, которые по силовой части схемы практически не отличаются.

Какие идеи по улучшению стабильности работы блока? У кого есть опыт по ремонту и модернизации? Пишите в комментарии!

Если интересно, что я буду публиковать на блоге СамЭлектрик дальше – подписывайтесь на получение новых статей.

Обновление статьи от 3 августа 2013г.: По наводке читателей блога Андрея и nata16 публикую схемы устройства защиты ламп освещения из журнала Радиолюбитель. Автор – Александр Протопопов.

Радиолюбитель_Схема1 устройства полной защиты ламп освещения

Радиолюбитель_Схема2 устройства полной защиты ламп освещения

А также сам журнал, где в статье на странице 6 приведены эти схемы и подробно описан принцип действия.

• Журнал «Радиолюбитель», 2005, №6 / Журнал «Радиолюбитель», 2005, №6, rar, 1.71 MB, скачан: 2421 раз./

Блок защиты ламп БЗЛ-300

1. Общие сведения.
1.1. Блок защиты ламп накаливания БЗЛ-300 предназначен для защиты ламп накаливания и галогенных ламп напряжением 220 В .
1.2. Блок защиты обеспечивает плавное включение ламп накаливания и галогенных ламп в течение 2…3 секунд.
1.3. Блок защиты ограничивает выходное напряжение на уровне 210 В. За счет уменьшения пусковых токов в несколько раз и ограничения напряжения на уровне 210 В, при входном напряжении свыше 220 В, увеличивается срок службы ламп в 5…7 раз. Это особенно актуально при использовании галогенных ламп напряжением 220 В которые существенно дороже ламп накаливания, либо в местах установки ламп накаливания и галогенных ламп где их частая замена затруднена, либо трудоемка (например при использовании галогенных ламп в подвесных потолках).
1.4. В отличие от аналогов блок защиты ламп БЗЛ-300 включается не в разрыв цепи питания ламп накаливания или галогенных ламп, в данном варианте питание ламп осуществляется непоредственно через блок защиты ламп. Теоретически, только такой вариант подключения блока защиты ламп позволяет качаственно защитить лампы накаливания и галогенные лампы от постоянных выходов из строя.

2. Технические данные блока защиты ламп БЗЛ-300.

2.1.Входное напряжение,В180…260
2.2.Номинальная частота,Гц50
2.3.Максимальный ток нагрузки,А1,5
2.4.Напряжение на нагрузке,В, не более210
2.5.МощностьВт20…300
2.6.Время разгонаСек2…3
2.7.Габаритные размерымм, не более55×30×15
2.8.Массакг, не более0,06
2.9.Температура окружающей среды°С-25 … +40

3. Требования по технике безопасности.
3.1. Подключение или отключение блока защиты ламп БЗЛ-300, замену ламп необходимо производить только после отключения от электросети.
3.2. Во избежание выхода блока защиты ламп БЗЛ-300 из строя запрещается подключать нагрузку мощностью потребления, превышающей 300 Вт в связи с возможностью перегрева.

4. Устройство блока защиты ламп БЗЛ-300 для защиты ламп накаливания и галогенных ламп.

Конструктивно блок защиты смонтирован на текстолитовой печатной плате с использованием микроконтроллера. Печатная плата устанавливается внутри пластмассового корпуса размером меньше спичечного коробка. Основание блока защиты служит теплоотводом. Подключение ламп накаливания и напряжения питания производится через две пары выводов (см. рис.)

5. Принцип действия блока защиты ламп накаливания и галогенных ламп.
После подачи напряжения на блок защиты выходное напряжение увеличивается с замедлением до уровня рабочего за 2…3 секунды. При увеличении напряжения сети с 230 В до 260 В напряжение на нагрузке остается неизменным на уровне 210 В. При увеличении напряжения свыше 260 В происходит отключение блока защиты и напряжение на нагрузке снимается (нагрузка отключается от сети), при последующем снижении входного напряжения до уровня рабочего работа блока защиты возобновляется.

6. Подготовка к работе блока защиты ламп.
6.1. Подсоединить провода согласно схеме подключения.
6.2 Дополнительных настроек блок не требует.

7. Правила хранения.
7.1. Блок защиты ламп накаливания необходимо хранить в сухом отапливаемом помещении при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей при температуре от 5 до 40 °С и относительной влажности воздуха не более 80%.

8. Гарантийные обязательства.
8.1. Срок гарантии блока защиты ламп накаливания – 12 месяцев с момента приобретения, или 18 месяцев со дня выпуска.
8.2. Предприятие-изготовитель ООО «Электропроект» обязуется в течение гарантийного срока производить безвозмездный ремонт при соблюдении потребителем требований по эксплуатации, изложенных в настоящем руководстве.
8.3. Гарантийному ремонту не подлежат блоки защиты ламп, имеющие механические повреждения.
8.4. Гарантийный и послегарантийный ремонт производится по адресу:
620100, г. Екатеринбург, ул. Сибирский тракт 9/11, ООО «Электропроект»,
тел. (343) 254–78–90, 254–43–09, 261–10–29.

9. Поставка блоков защиты ламп БЗЛ-300.
9.1. Отгрузку блоков защиты ламп юридическим лицам ООО “Электропроект” осуществляет в обычном порядке на следующий день поступления предоплаты любым возможным видом отправки и в любом количестве.
9.2. Отгрузку блоков защиты ламп физическим лицам ООО “Электропроект” осуществляет как правило почтовым отправлением наложенным платежом в любых количествах. Возможна отправка любой транспортной компанией по желанию покупателя. Отгрузка блоков защиты ламп наложенным платежом в адрес физического лица осуществляется на следующий рабочий день после размещения заявки на данном сайте и последующего уточнения реквизитов покупателя нашим менеджером.
9.3. Заявку на приобретение блоков защиты ламп вы можете оформить, поставив галочку напротив блока защиты БЗЛ-300 и нажав кнопку “заказать”.

Блок защиты галогенных ламп своими руками

Интернет-магазин ЭТМ –
это более 1,25 млн. позиций от 520 поставщиков

Поможем сделать покупку

Пн-Пт с 7 00 до 20 00

Сб с 7 00 до 18 00

Вс с 8 00 до 17 00

Найдено в категориях:

Фильтр

Найдено в категориях:

Блок защиты 150вт галогенный и других ЛН (PRO11)

  • Код товара 9828280
  • Артикул 21451
  • Производитель FERON

Блок защиты 300вт галогенный и других ЛН (PRO11)

  • Код товара 9828281
  • Артикул 21452
  • Производитель FERON

Блок защиты 500вт галогенный и других ЛН (PRO11)

  • Код товара 9828282
  • Артикул 21453
  • Производитель FERON
Читайте также:  УЗО какой мощности правильно выбрать

Блок защиты 1000вт галогенный и других ЛН (PRO11)

  • Код товара 9828279
  • Артикул 21454
  • Производитель FERON

Блок защиты 500вт для галогенных и других ламп накаливания (94439 NP)

  • Код товара 5432826
  • Артикул 17709
  • Производитель Navigator Group

Блок защиты 200вт для галогенных и других ламп накаливания (94437 NP)

  • Код товара 1275356
  • Артикул 17707
  • Производитель Navigator Group/NP

Блок защиты 1000вт для галогенных и других ламп накаливания (94440 NP)

  • Код товара 6390056
  • Артикул 17710
  • Производитель Navigator Group

Блок защиты 300вт для галогенных и других ламп накаливания (94438 NP)

  • Код товара 7502870
  • Артикул 17708
  • Производитель Navigator Group/NP

Блок защиты 1000вт галогенных и других ламп накаливания (LP 1000w)

  • Код товара 9781250
  • Артикул CH915156
  • Производитель КОМТЕХ

Блок защиты 500вт галогенных и других ламп накаливания (LP 500w)

  • Код товара 9781249
  • Артикул CH915155
  • Производитель КОМТЕХ

Блок защиты 150вт галогенных и других ламп накаливания (LP 150w)

  • Код товара 9781243
  • Артикул CH915152
  • Производитель КОМТЕХ

Блок защиты 300вт галогенных и других ламп накаливания (LP 300w)

  • Код товара 9781248
  • Артикул CH915154
  • Производитель КОМТЕХ

Блок защиты 200вт галогенных и других ламп накаливания (LP 200w)

  • Код товара 9781246
  • Артикул CH915153
  • Производитель КОМТЕХ

Центр поддержки и продаж

  • Электрика
  • Свет
  • Крепеж
  • Безопасность

Мы в социальных сетях

© 2020 Компания ЭТМ — Копирование и использование в коммерческих целях информации на сайте www.etm.ru допускается только с письменного одобрения Компании ЭТМ. Информация о товарах, их характеристиках и комплектации может содержать неточности

Ваш город: Выберите город

Я подтверждаю свое согласие на обработку персональных данных согласно Политике обработки персональных данных

Переделка электронного трансформатора

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

Ссылка на основную публикацию
Adblock
detector