Частотное регулирование насосов принцип действия - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Частотное регулирование насосов принцип действия

Частотное регулирование. Законы и принципы

Система частотного регулирования состоит из основного и вспомогательного оборудования преобразовательного звена технических и программных средств, которые служат для выполнения действий по частотному регулированию в технологической инженерной системе или ее отдельных частях.

В состав системы входят:

  1. Устройства верхнего уровня АСУ ТП, роль которых выполняют промышленные и панельные компьютеры, а также устройства связи обслуживающего персонала с программно-техническим комплексом СЧР.
  2. Устройства нижнего уровня: контроллеры, интеллектуальные реле, устройства связи с управляемым объектом, датчики параметров и т. д.
  3. Устройства и линии связи предназначенные для передачи информации между элементами СЧР.
  4. Дополнительное оборудование: шкафы для размещения элементов (ПТК) программно- техническим комплексом, кроссовые шкафы, устройства связи с подсистемами автоматического управления.
  5. Устройства, обеспечивающие электропитание ПТК СЧР.
  6. Программное обеспечение АСУ ТП

Кроме преобразователей частоты, являющихся основным оборудованием для частотного регулирования, в число оборудования можно включить:

  1. Силовые трансформаторы, предназначенные для согласования параметров напряжения источника питания, преобразователя и электродвигателя.
  2. Фильтры, установленные на входе и выходе преобразователя частоты.
  3. Силовые высоковольтные и коммутационные и защитные аппараты силовых цепей СЧР, высокого и низкого напряжения.

Станции частотного регулирования

СЧР являются основным оборудованием, предназначенным для автоматической работы насосных агрегатов, включенных в магистраль по обеспечению потребителей горячей и холодной водой, а также для отопления.

Рис №1. Блок-модуль, комплексная станция частотного регулирования

Использование станции способствует экономии электроэнергии и понижению затрат на эксплуатацию

Настройка станции приводит к поддержанию параметров работы в автоматическом режиме, разрешает плавный пуск двигателя, служит для защиты оборудования, перевод питания в автоматическом режиме на питание от резервного источника.

Частотное регулирование скорости асинхронного электродвигателя

Частотное регулирование электроприводов повышает надежность работы оборудования и систем, автоматизирует производство, позволяет экономить электрическую энергию и ресурсы. Частотное регулирование насосов производимое, при использовании инвертора обеспечивает плавный пуск двигателя, увеличивает эксплуатационное время работы электропривода и трубопроводов, предотвращает гидроудары, помогает поддерживать напор в трубах на должном уровне.

Принцип частотного регулирования асинхронного двигателя или синхронной машины, основан на применении преобразователя частоты. Присутствие инвертора позволяет регулировать скорость вращения вала электропривода плавно и бесступенчато, электронным способом. Достигается при помощи изменения частоты питающего напряжения, в этом случае изменяется угловая скорость магнитного поля статора.

Рис №2. Схема частотного регулирования электропривода

Применение скважинных насосов с частотным регулированием, способствует хорошей эксплуатационной способности устройства за счет повышения жизненного цикла насоса, происходит это при замене задвижкой, используемой при подаче на частотный преобразователь для регулирования частоты вращения.

Использование насосов с частотным регулированием снижает энергопотребление на 10 – 60%, что способствует эффективному энергосбережению.

Рис № 3. Работа насосов с частотным регулированием на сеть с преобладанием статической составляющей

Применение частотного привода для скважинных насосов имеет несколько существенных недостатков,их надо принимать во внимание при выборе систем регулирования.

  1. Возможен перегрев двигателя при снижении быстрого обтекания электродвигателя, нужно иметь сведения по снижению подачи при понижении скорости вращения, это требует использование кожуха охлаждения или диктует целесообразность использования двигателя большей мощности.
  2. Подшипники скольжения, которые используются на скважинных насосах, при понижении скорости вращения вала, приводит к быстрому износу подшипников. Для более надежной работы подшипников требуется ограничить частоту вращения.

Законы частотного регулирования

Регулирование скорости асинхронной машины происходит при управлении по частотной зависимости подаваемого напряжения. в этом случае отношение напряжения и частоты,

При уменьшении частоты происходит снижение скорости вращения двигателя, одновременно происходит увеличение скольжения. При условии регулирования скорости по линейной частотной зависимости U / (ƒ) = const приложенного напряжения происходит уменьшение максимального момента на 1/3 при меньших скоростях. При частотном регулировании закономерность частотного регулирования напряжения машины напрямую зависит от вида нагрузочной характеристики, приложенной к валу двигателя.

Использование внедрения добавочной ЭДС в цепь ротора, применяется в вентиляционных системах. Двигатели постоянного тока или инверторы напряжения служат источником ЭДС При добавлении ЭДС понижается ток ротора, происходит снижение двигательного момента, скорость вращения двигателя понижается.

Для мощных асинхронных двигателей целесообразно применять закон пропорционального регулирования. Применение этого закона способствует понижению критического момента и соответственно перегрузочной способности двигателя.

Частотное регулирование синхронного двигателя

Скорость синхронного двигателя также регулируется по частотному принципу. Из-за синхронного вращения рота с вращением магнитного поля статора, при уменьшении частоты рабочая характеристика машины падает, при увеличении возрастает.

Применение частотного регулирования для вентиляционных систем

Частотное регулирование вентиляторов происходит на понижение давления вентилятора, это происходит из-за подбора электродвигателя по мощности соответственно к максимальному давлению и производительности вентиляционной системы. Частота вращения вентилятора изменяется по сигналу (обратной связи) от термодатчика с использованием алгоритма пропорционально-интегрального регулирования.

Рис №4. Энергоэффективность при частотном регулировании вентиляционных систем

Электродвигатель для частотного регулирования

Для решения вопросов по сбережению ресурсов и электроэнергии принято решение о разработке и внедрению «умных» асинхронных двигателей, снабженных системами частотного регулирования. Частотный привод снижает нагрузку по току за счет применения плавного пуска. Применение двигателя для частотного регулирования повышает коэффициент полезного действия двигателя и способствует энергосберегающим факторам, позволяет избавиться от многих механизмов, увеличивающих потери по мощности и понижающих надежную работу устройства.

Главное преимущество электродвигателя для частотного регулирования заключается в наличии высокого опрокидывающего момента что, обеспечивает устойчивую работу в самом широком диапазоне регулирования.

Для чего необходимо частотное регулирование насосов

Насосные станции представляют собой систему, работающую на переменных нагрузках, возникающих в процессе водопотребления. В зависимости от уровня водопотребления, нагрузки могут значительно падать или возрастать. В этом случае, такое условия как регулирование работы насосов является обязательным, так как пониженные расходы воды могут привести к нарастающему давлению в системе, что может привести к таким последствиям как:

  • потеря энергии;
  • потеря жидкости на негерметичных стыках;
  • повышение расходов на эксплуатацию;
  • повышение износа оборудования.

Вследствие этого, вопрос о регулировании стал неотъемлемой частью использования насосов. На сегодняшний день преобразователи частоты стали наиболее приемлемым вариантом из всех когда-либо возникавших, способных за счёт регулирования числа оборотов вала электропривода, регулировать скорость его вращения. Вследствие этого, выполняется обеспечение системы требуемым напором с оптимизацией параметров минимального расхода и оптимальных значений КПД соответственно. Таким образом, данный метод позволяет поддерживать в норме общее давление гидросистемы, уменьшая обороты в момент малых расходов и повышая при увеличении потребления ресурсов, например, воды в коммунальных службах при подаче населению. В целом же, использование частотников не ограничивается на указанных и промышленных насосах. Они вполне смогут обеспечить работу бытовых насосов, используемых для водяных скважин, для насосов фекального типа и прочих, помогая сэкономить как минимум 30% электроэнергии, повышая окупаемость самого преобразователя.

Кроме самих преобразователей, к числу оборудования для выполнения частотного регулирования также можно отнести:

  • Трансформаторы силовые, служащие как звено согласования параметров напряжения, между источником питания и инвертора с двигателем;
  • Установленные у входа и выхода частотника фильтры;
  • Высоковольтные коммуникации и защитные устройства силовых цепей.

Эффективность применения преобразователей для насосов

Суть работы частотного преобразователя основывается на плавном бесступенчатом регулировании скорости вращения вала двигателя, передающего нагрузку на связанные с ним механизмы. Наиболее часто использую преобразователи для однофазных двигателей, применяемых в насосах и работающих по принципу переменного вращающего момента. Кроме того, современные частотные устройства способны не только выполнять функцию управления, но и ряд других задач, в том числе и защитных, влияющих на эффективность работы насосного оборудования:

  • защищают насосы и электродвигатели от перегрузок;
  • выполняют защиту от перепадов напряжения;
  • предотвращают возможность возникновения коротких замыканий;
  • предотвращают перегрев двигателя насосного устройства;
  • предотвращают возникновение гидроударов в системе;
  • одинаково эффективное управление при использовании нескольких насосов;
  • максимально облегчают эксплуатацию насосных станций, проведение ремонтных операций, исключая существенные потери в водоснабжении.
Читайте также:  Трехфазная розетка для плиты

Спроектированные на профессиональном уровне, использующие множество функций автоматической диагностики и определения параметров, а так же чётко построенный алгоритм работы, использование устройств для частотного регулирования насосами обрело множество выгодных решений, среди которых:

  • Автоматическое включение/отключение насосов и насосных станций по сигналу датчиков давления;
  • Автоподдержание давления при меняющемся расходе рабочего вещества;
  • Защита от включения насоса при отсутствии воды или закрытой задвижке;
  • Даёт возможность перекачивать различные типы жидкостей, в том числе и по температурному значению;
  • Выполняет сглаживание пусковых моментов, защищая от воздействия резких гидропотоков;
  • Способствует снижению энергозатрат на эксплуатацию систем;
  • Снижают потребление электрической энергии при любых допустимых условиях мощностной эксплуатации двигателя;
  • Возможность регулировать работу двигателей и, соответственно насосов на расстоянии, благодаря съёмному пульту управления и прочие.

Примеры использования насосов работающих с частотными преобразователями

  1. Системы насосов подъёма, задачей которых является поддержание в пределах заданного уровня поддерживать давление в системах водоотвода и водоснабжения. При расходе жидкости на низком уровне, частотные устройства переводят насосный двигатель в режим ожидания, проведя предварительно подкачку (нагнетание) давления, после чрезмерного упадка которого он снова запускается.
  2. Система орошения. Используемые в сельском, садовом и прочих хозяйствах, поддерживают постоянную стабильность подачи воды, при этом, контролируя время и дату запуска с помощью встроенной панели интеллектуального управления. Плавный старт и заполнение труб на низкой скорости позволяют сохранить от разрушения избыточным давлением всю систему полива.
  3. Система поддержки заданных уровней резервуаров. Используемые для промышленных и прочих целей резервуары сбора воды имеют ограничения, контроль за не превышение которых ложится на систему вправления. Так же, она регулирует чистоту самого насоса, запуская функцию очистки крыльчаток от различных отложений, отягощающих уровень работы устройства.

Конечно же, список сфер и условий использования далеко не полон, что говорит о высокой эффективности и крайней необходимости использования частотного регулирования насосов с помощью преобразователей и прочего комплексного оборудования в различных сферах деятельности человека, как бытового, так и промышленного, производственного и прочего характера.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Рекомендации по выбору частотных преобразователей для насосов водоснабжения и отопления

Насосы, используемые в системах автономного водоснабжения и отопления, являются производительным, но при этом достаточно затратным в эксплуатационном плане оборудованием из-за высокого уровня энергопотребления. Уменьшить затраты и существенно продлить срок эксплуатации насоса можно укомплектовав его частотным преобразователем, о котором мы поговорим в данной статье.

Вы узнаете, зачем нужен и какие функции выполняет частотный преобразователь. Будет рассмотрен принцип работы таких устройство, их разновидности, технические характеристики и приведены рекомендации по выбору преобразователей для скважинных и циркуляционных насосов.

1 Зачем нужен частотный преобразователь?

Практически все современные насосы, реализующиеся в бюджетной и средней ценовой категории, спроектированы по принципу дросселирования. Электромотор таких агрегатов всегда работает на максимальной мощности, а изменение расхода/давления подачи жидкости осуществляется посредством регулировки запорной арматуры, которая меняет сечение пропускного отверстия.

Такой принцип работы имеет ряд существенных недостатков, он провоцирует появление гидравлических ударов, так как сразу же после включения насос начинает качать воду по трубам на максимальной мощности. Также проблемой является высокое энергопотребление и быстрый износ компонентов системы — как насоса, так и запорной арматуры с трубопроводом. Да и о точной настройке такой системы водоснабжения дома из скважины речи быть не может.

Вышеописанные недостатки несвойственны насосам, оснащенным частотным преобразователем. Данный элемент позволяет эффективно управлять давлением, создаваемым в трубопроводе водоснабжения либо отопления, с помощью изменения величины поступающей на мотор электроэнергии.

Схема работы насоса в разных режимах

Как можно увидеть на схеме, насосное оборудование всегда рассчитывается по параметру предельной мощности, однако в режиме максимальной нагрузки насос работает лишь в периоды пикового потребления воды, что бывает крайне редко. Во всех остальных случаях повышенная мощность оборудования является излишней. Частотный преобразователь, как показывает статистика, позволяет экономить до 30-40% электроэнергии при работе циркуляционных и скважинных насосов.
к меню ↑

1.1 Устройство и алгоритм работы

Частотный преобразователь для насосов водоснабжения является электротехническим прибором, который преобразует постоянное напряжение электросети в переменное по предварительно заданной амплитуде и частоте. Практически все современные преобразователи выполнены по схеме двойного изменения тока. Такая конструкция состоит из 3-ех основных частей:

  • неуправляемый выпрямитель;
  • импульсный инвертор;
  • система управления.

Ключевым элементом конструкции является импульсный инвертор, который в свою очередь состоит из 5-8 ключей-транзисторов. К каждому из ключей подключается соответствующий элемент обмотки статора электромотора. В зарубежных преобразователях используются транзисторы класса IGBT, в российских — их отечественные аналоги.

Система управления представлена микропроцессором, который параллельно выполняет функции защиты (отключает насос при сильных колебаниях тока в электросети) и контроля. В скважинных насосах для воды управляющий элемент преобразователя подключается к реле давления, что позволяет функционировать насосной станции в полностью автоматическом режиме.

Экономия электроэнергии при использовании ЧП

Алгоритм работы частотного преобразователя достаточно прост. Когда реле давления определяет, что уровень давления в гидробаке упал ниже допустимого минимума, передается сигнал на преобразователь и тот запускает электромотор насоса. Движок разгоняется плавно, что снижает воздействующие на систему гидравлические нагрузки. Современные преобразователи позволяют пользователю самостоятельно устанавливать время разгона электродвигателя в пределах 5-30 секунд.

В процессе разгона датчик сигнала непрерывно передает на преобразователь данные о уровне давления в трубопроводе. После того, как оно достигает требуемой величины, блок управления останавливает разгон и поддерживает заданную частоту оборотов мотора. Если подключенная к насосной станции точка водопотребления начнет расходовать больше воды, преобразователь увеличит давление подачи путем повышения производительности насоса, и наоборот.
к меню ↑

1.2 Как работает насос в паре с частотным преобразователем? (видео)

2 Рекомендации по выбору и установке оборудования

Если используемый вами насос не обладает встроенным частотным преобразователем, то приобрести и установить такой регулятор мощности можно самостоятельно. Как правило производители насосов в техническом паспорте указывают, какой конкретно преобразователь подойдет к данном модели оборудования.

Если же рекомендаций нету, и выбор прибора полностью лег на ваши плечи, руководствуйтесь следующими критериями:

  1. Мощность — преобразователь напряжения всегда подбирается исходя из мощности электропривода, к которому он подключается.
  2. Входное напряжения — указывает на силу тока, при которой преобразователь остается работоспособным. Тут необходимо выбирать с оглядкой на колебания, которые могут быть в вашей электросети (пониженное напряжение приводит к остановке прибора, при повышенном он может попросту выйти из строя). Также учитывайте тип двигателя насоса — трех, двух или однофазный.
  3. Диапазон частот регулировки — для скважинных насосов оптимальным будет диапазон 200-600 Гц (зависит от изначальной мощности насоса), для циркуляционных 200-350 Гц.
  4. Количество ходов и выходов управления — чем их больше, тем больше команд и, как следствие, режимов работы преобразователя в сможете настроить. Автоматика позволяет задать скорость оборотов при пуске, несколько режимов максимальных оборотов, темпы разгона и т.д.
  5. Способ управления — для скважинной насосной станции удобнее всего будет выносное управление, которое можно расположить внутри дома, тогда как для циркуляционных насосов отлично подойдет преобразователь с пультом ДУ.

Циркуляционный насос Грундфос с частотным преобразователем

Читайте также:  Как самому построить туалет на даче

Если вы отсеяли все представленные на рынке приборы и столкнулись с тем, что подходящего по характеристикам оборудования попросту нет, необходимо сузить критерии выбора до ключевого фактора — потребляемого двигателем тока, по которому подбирается номинальная мощность преобразователя.

Также выбирая блок управления частотой, особенно от отечественных либо китайских производителей, учитывайте срок гарантийного обслуживания. По его продолжительности можно косвенно судить о надежности техники.

Пару слов о производителях. Ведущей компанией в данной сфере является фирма Grundfoss (Дания), которая поставляет на рынок свыше 15 различных моделей преобразователей. Так, для насосов с трехфазным электродвигателем подойдут модель Micro Drive FC101, для однофазных (работающих от стандартной электросети 220В) — FC51.

Более доступным в ценовом плане является оборудование компании Rockwell Automation (Германия). Фирма предлагаем линейку преобразователей PowerFlex 4 и 40 для маломощных циркуляционных насосов и серию PowerFlex 400 для скважинных насосных станций (от одного преобразователя могут работать сразу 3 параллельно подключенных насоса.

Учитывайте, что цена хорошего преобразователя подчас может доходить до стоимости насоса, поэтому подключение и настройка такого прибора должна выполняться исключительно специалистами.

Основы применения частотных преобразователей в насосных установках

В данной статье мы попытаемся разобраться с основами применения преобразователей частоты (частотно-регулируемого привода) в насосных установках.

Насосы и насосные установки

Определимся для начала с основными понятиями и принципами.

Насосная установка – это совокупность насосных агрегатов, трубопроводов, запорно-регулирующей арматуры, КИП, устройств управления и защиты.

Насосная установка характеризуется двумя основными параметрами: подача и напор.

Подача – это объем жидкости который способна перекачать насосная станция за единицу времени, измеряется в куб. метр / час.

Напор – это энергия необходимая для подъема жидкости на заданную высоту с преодолением сил трения в трубопроводной арматуре, измеряется в метрах. Напор и давление связаны между собой соотношением:

где H – напор; P – давление насоса; ρ – плотность жидкости; g – ускорение свободного падения.

Насосные установки по назначение делятся на:

  • Водопроводные (ВНС) – это насосные станции которые подают воду от водоема до очистных сооружений (ВНС I подъема) и от очистных сооружений в распределительную сеть трубопроводов (ВНС II подъема). Так же существуют промежуточные повысительные насосные станции, в случае когда необходимо создать достаточное давление для поднятия воды на требуемую высоту.
  • Канализационные (КНС) – перекачивают сточные воды к месту очистки.
  • Теплофикационные – предназначены для подачи горячей воды в системе горячего водоснабжения и отопления.
  • Технологические – насосные станции для перекачки различных жидкостей в технологических процессах.

По виду рабочей камеры насосы делятся на динамические и объемные, те в свою очередь на лопастные, электромагнитные, трения, крыльчатые, роторные, возвратно-поступательные и другие.

В наше время чаще всего используются лопастные насосы: центробежные и осевые.

В основе работы центробежного насоса лежит действие центробежной силы на перекачиваемую жидкость. При вращении рабочего колеса жидкость приходит во вращение и под действием центробежной силы перемещается от центра колеса на периферию, а далее в напорную трубу.

Жидкость в осевом насосе перемещается вдоль оси насоса за счет воздействия лопастей рабочего колеса и создания разности давления под и над лопастью. По принципу работы он схож с пропеллером самолета или бытовым вентилятором.

Основной характеристикой насоса является зависимость напора от подачи, которая называется напорно-расходной.

В качестве электропривода насосов в основном используются асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели переменного тока. Реже используются асинхронные двигатели с фазным ротором.

В статье мы рассмотрим работу насосных установок на примере центробежных насосов.

Режимы работы

Теперь рассмотрим режимы работы насосных установок и определимся от чего зависит тот или иной режим.

Режим работы насосных установок зависит либо от изменения расхода у потребителей, либо от притока сточной жидкости, в случае с канализационными насосными станциями.

Режимы водопотребления характеризуются временными графиками и бывают суточными, недельными, месячными и т.д.

Подача насосных установок, работающих без промежуточных емкостей, должна быть равна потреблению. При увеличении потребления подачу необходимо увеличивать, при этом также увеличиваются потери напора в трубопроводах. Поэтому следует также увеличивать давление, которое развивают насосные установки. При уменьшении водопотребления следует снизить подачу и давление.

Ранее для регулирования характеристик насосных установок использовалось изменение числа работающих насосов и степени открытия задвижек. Теперь с появлением частотных преобразователей регулируется частота вращения рабочих колес насосов.

При работе с промежуточной (аккумулирующей) емкостью подача насосной установки отличается от потребления. В этом случае, если нет частотных преобразователей, насосные агрегаты включаются, когда уровень воды достиг минимальной отметки, и отключаются, когда уровень достигает верхней заданной отметки, и так далее по циклу.Таких циклов в сутки может быть до 50, а в некоторых случаях и до 100. Такое количество пусков, особенно для двигателей большой мощности, негативно сказывается на состоянии электроприводов.

Изменение характеристик центробежных насосов можно осуществить двумя способами: изменением степени открытия задвижки на напорном трубопроводе и изменением частоты вращения рабочего колеса насоса.

  • регулирование задвижкой (дросселирование) – уменьшая степень открытия задвижки, мы уменьшаем подачу насоса, напор перед задвижкой увеличивается, а после задвижки уменьшается из-за потери напора на запорной арматуре. Открывая задвижку, мы увеличиваем подачу, напор который создает насос уменьшается, а напор за задвижкой увеличивается. Этот способ крайне неэкономичный, так как большое количество энергии теряется на сопротивлении запорной арматуры.
  • регулирование изменением частоты вращения насосов – при таком регулировании при снижении частоты вращения, кривая напорно-расходной характеристики насоса перемещается вниз. Подача, напор насоса и напор в трубопроводе одновременно уменьшаются. При увеличении частоты вращения насоса, увеличивается подача и напор насоса, и напор в сети.

Данный способ регулирования является более экономичным, но требует применения частотных преобразователей.

При регулировании с помощью частотных преобразователей снижение энергопотребления равно потерям, которые обусловлены повышением напоров при работе насосов с постоянной частотой вращения.

Особенности работы насосов при изменении частоты вращения

При регулировании насоса изменением частоты вращения обеспечивается перемещение рабочей точки насоса по кривой характеристики трубопровода, а не насоса, как в случае с дросселированием. При этом избыточные напоры отсутствуют и обеспечивается минимальное энергопотребление.

Регулирование частоты вращения насосов в насосной установке дает возможность оптимально распределить нагрузки между насосами, выровнять их КПД и удерживать в зоне оптимальных КПД их рабочие точки, снизив затраты энергии к минимальным значениям.

При изменении частоты вращения насоса пропорционально изменяются и все его характеристики. Но при низкой частоте вращения порядка 10-15% от номинальной происходит нарушение зависимости между подачей и напором насоса. Его характеристики теперь нельзя представить в виде параболической кривой, а только россыпью точек. Потому диапазон регулирования частоты вращения насоса не должен выходить за предельную нижнюю границу.

Так же при работе насосов с пониженной частотой вращения могут возникнуть такие опасные явления как кавитация и помпаж.

Кавитация – это явление при котором поток жидкости перестает быть сплошным, сопровождающееся образованием пузырьков газов и паров жидкостей. Кавитация опасна дополнительными потерями электроэнергии и разрушением рабочих элементов насоса. Она может возникнуть в случае если существующий напор на всасывающем трубопроводе меньше требуемого. При снижении частоты вращения насоса, также в большую сторону увеличивается требуемое значение напора на всасывающем трубопроводе, что следует учитывать во избежание возникновения кавитации.

Помпаж – может возникнуть в насосах с неустойчивыми (лабильными) напорно-расходными характеристиками при пересечении лабильной характеристики насоса с характеристикой трубопровода в двух точках. В этом случае насос начинает попеременно работать с параметрами двух точек и вся система становится неустойчивой. Происходят гидравлические удары, резкое закрытие обратных клапанов, частое изменение потребляемой мощности и нестационарные режимы работы сети электроснабжения. Работа в таком режиме недопустима !

Читайте также:  Распределительные коробки электрические наружные

При оснащении насосных установок частотно-регулируемым приводом следует не забывать о том, что:

  1. Помимо экономии электроэнергии необходимо обеспечить нормальный режим работы насосного агрегата;
  2. Следует анализировать прогнозируемые режимы работы насосов на низкой частоте вращения и учитывать это при создании автоматизированных систем.

Частотные насосы в системе отопления. Чем лучше обычных?

В современных системах отопления всё чаще используется насосы с частотным регулированием потока теплоносителя, или их еще называют — частотными насосами. Многие пользователи стараются выяснить преимущества данных устройств перед обычными насосами, поскольку частотные насосы стоят немного дороже, чем их классические аналоги. Чем оправдана повышенная стоимость циркуляционных насосов с частотным регулированием? Давайте разбираться.

Достоинства частотных насосов

Насосы с частотным регулированием имеют два основных преимущества перед обычными. Главными преимуществами насосов с частотным преобразованием можно считать:

  • Они могут работать в режимах, пропорциональных давлению теплоносителя;
  • Меньший расход электроэнергии, поскольку частотный работает более рациональней, чем классический.

На самом деле этих преимуществ гораздо больше, но об этом — ниже.

Работа в режиме пропорционально давлению очень важна в системах отопления, где расход теплоносителя регулируется терморегуляционными вентилями, которые установлены на радиаторах. Эти вентили еще называют термостатическими вентилями и с помощью данных устройств можно регулировать подачу теплоносителя в радиатор. Закрывая вентиль проток через радиатор уменьшается, тем самым увеличивая нагрузку на циркуляционный насос, поскольку пропускная способность отопительного контура немного снижается.

В чём разница между частотным насосом и классическим

Обычный циркуляционный насос в условиях повышенной нагрузки продолжает работать в стандартном режиме, тем самым создавая избыточное давление на выходе, что влечет за собой повышенный расход электроэнергии. Частотный насос, в условиях снижения пропускной способности отопительного контура, снижает обороты при помощи частотного преобразователя, тем самым препятствуя созданию избыточного давления на выходе насоса, что существенно экономит электроэнергию.

При использовании обычных циркуляционных насосов в системах отопления, наряду с термостатическими вентилями, возникают посторонние шумы, связанные с перепадом давления в системе отопления. Эти посторонние шумы наиболее отчетливо слышны в ночное время, и оказывают раздражающее действие во время отдыха. Закрытие вентилей создаёт паразитные гидравлические сопротивления, которые увеличивают нагрузку на циркуляционный насос обычного типа, что не лучшим образом сказывается на его долговечности.

Принцип работы частотного насоса

Использование циркуляционного насоса с частотным управлением может решить массу проблем. Он сам определяет для себя режимы работы, поскольку моментально адаптируется под перепады давления в отопительном контуре. Частотный преобразователь внутри управляет оборотами двигателя, и как только сопротивления в системе отопления начинает увеличиваться, с помощью частотного преобразователя, сразу же уменьшаются обороты двигателя. Это позволяет стабилизировать давление на выходе и поддерживать данное давление на заданном уровне. В таких условиях частотный насос работает в щадящем режиме, что положительного сказывается на сроке его службы, и не ведёт к неоправданному расходу электроэнергии.

С помощью частотного насоса достигаются идеальные параметры работы системы отопления, в которой применяются термостатические вентили. Также отсутствие перепадов давления положительно сказывается на сроке службы трубных соединений и фитингов, а также на состоянии самих труб и теплообменника. Также такие насосы имеют некоторые конструкционные особенности, которые отличают данные устройства от обычных циркуляционных насосов. Насосы с частотным преобразованием изготовлены с применением постоянных магнитов, что позволяет существенно снизить потребление электроэнергии.

Частотник можно сравнить с энергосберегающей лампой, которая хоть и дороже обычной, но приносит ощутимую экономию при длительном использовании. Насосы частотного типа также экономят бюджет пользователя, хоть и сам насос стоит немного дороже, чем его классический собрат. При использовании частотного насоса в системах отопления на долговременной основе, экономический эффект — очевиден. Частые перепады давления в отопительном контуре могут со временем вывести обычный циркуляционный насос из строя, а данный элемент системы отопления является одним из самых дорогостоящих. Частотный же насос работает в оптимальных условиях, и имеет вдвое больший срок эксплуатации.

Дополнительные возможности частотного насоса

Насосы с частотным преобразованием имеют специальный дисплей, на котором отображается информация об объёме перекачиваемого теплоносителя — в час. Также насосы данного типа имеют органы управления в виде кнопок, с помощью которых можно задавать вручную режимы работы насоса. Частотный насос, с помощью кнопок управления, можно настроить на обычный режим, что позволит использовать это устройство, как обычный нерегулируемый насос. Это делается по желанию пользователя, а также при необходимости установки частотного насоса в системах отопления, где не используется термостатические вентили. Режимы работы частотного насоса также отображаются на светодиодном дисплее.

Энергопотребление и нагрев

В условиях максимальной нагрузки циркуляционный насос частотного типа расходует не более 20 Вт электроэнергии. И всё это благодаря тому, что в данном насосе используются постоянные магниты. При минимальном снижении оборотов частотный насос расходует всего 12-13 Вт, в то время как обычный циркуляционный насос постоянно расходует около 50 Вт — в среднем.

В условиях снижения пропускной способности отопительного контура, в силу закрытия термостатических вентилей, обычный насос продолжает работать на штатных оборотах, пытаясь преодолеть сопротивление. На выходе насоса растет давление, и вместе с тем повышается нагрев самого насоса, что также негативно сказывается на сроке его эксплуатации. Циркуляционный насос с частотным регулированием не имеет таких недостатков, поскольку он подстраивается под сопротивление отопительной системы, и его двигатель работает в комфортных условиях без излишнего нагрева. Частотный насос рассчитан для работы десятилетиями.

Положительное воздействие на элементы отопительной системы

Также нивелирование частотным насосом перепадов давления в отопительном контуре благотворно сказывается на сроке службы расширительного бачка. Перепады давления заставляют резиновую мембрану, которая используется в расширительных бачках, сжиматься и растягиваться, что со временем приводит к выходу расширительного бачка из строя.

Отсутствие перепадов давления, которое гарантировано при использовании насоса с преобразователем, позволяет работать расширительному бачку практически в одном режиме, который не влечет за собой растягивание или сжимание резиновой мембраны. Всего лишь нужно чётко следить за давлением воздуха в расширительном бачке, и периодически подкачивать его. Это должен делать специалист, который обслуживает вашу систему отопления.

При использовании циркуляционного насоса с регулированием, гораздо дольше служат радиаторы. Это также связано напрямую с отсутствием перепадов давления в отопительном контуре, которые способствуют деформации радиаторов, что со временем приводит к появлению микротрещин, а затем и свищей.

Заключение

Циркуляционные насосы с частотным преобразованием завоевывают всё большую популярность, невзирая на немного большую стоимость, чем у обычных насосов. Преференций от такого оборудования гораздо больше и все затраты на покупку данного устройства с лихвой компенсируется — экономией электроэнергии и работой системы отопления в правильном режиме. Также использование такого оборудования несёт пользователю повышенный комфорт, поскольку работа системы отопления становится практически бесшумной.

Циркуляционный насос с частотным преобразованием не только задает правильные параметры функционирования отопительного контура, но и положительно отражается на работе отопительного котла. Отсутствие перепадов давления, в первую очередь, очень благотворно отражается на теплообменнике, избавляя его от постоянных деформаций, которые вызваны скачками давления в системе отопления. Такие насосы — это очень полезная инновация в отопительных системах и за этой инновацией — будущее.

Ссылка на основную публикацию
Adblock
detector