ДЗШ принцип действия - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

ДЗШ принцип действия

Дифференциальная токовая защита шин

Дифференциальная токовая защита шин предназначена для быстрого отключения электрических цепей, включенных на сборные шины, при КЗ на сборных шинах или на любом другом оборудовании, входящем в зону действия защиты.

Зона ее действия ограничивается трансформаторами тока, к которым подключены реле защиты. В основу выполнения защиты положен принцип сравнения значений и фаз токов электрических цепей при КЗ и других режимах работы.

Для выполнения защиты дифференциальное реле РТ подключают к трансформаторам тока присоединений, как показано на рис. 1. При таком включении ток в реле всегда будет равен геометрической сумме вторичных токов присоединений.

При КЗ на шинах (рис. 1, а) вторичные токи присоединений будут иметь одно направление и через реле будет проходить сумма этих токов

При внешнем КЗ (рис. 1,б) ток в обмотке реле

реле работать не будет, если оно отстроено от тока небаланса, появляющегося вследствие погрешности трансформаторов тока.

Рис. 1. Токи в реле дифференциальной токовой защиты шин при КЗ на шинах (а) и внешнем КЗ (б)

Основанные на общем принципе, дифференциальные защиты шин могут отличаться друг от друга по схеме, что связано с приспособлением их к той или иной главной схеме подстанции. В эксплуатации находятся дифференциальные защиты шин для подстанций с одной и двумя системами шин, а также для подстанций с реактированными линиями и несколькими источниками питания.

Наибольший интерес с точки зрения обслуживания их оперативным персоналом представляют дифференциальные токовые защиты шин для подстанций с двумя системами шин с фиксированным распределением присоединений, которое часто используется как одно из средств ограничения токов КЗ в сетях 110—220 кВ. Ниже рассматривается одна из таких защит.

Отличительной особенностью защиты (рис. 2) является избирательность в отключении поврежденной системы шин, если соблюдено установленное распределение присоединений по шинам. Селективность действия обеспечивается применением в схеме двух избирательных токовых органов (комплектов реле) РТ1 и РТ2 и общего пускового органа (комплекта реле) РТЗ.

Реле каждого избирательного комплекта подключены к трансформаторам тока присоединений, зафиксированных за данной системой шин, и действуют на отключение выключателей только этих присоединений. Реле общего пускового комплекта подключены к трансформаторам тока присоединений обеих систем шин и поэтому срабатывают при КЗ на любой из систем шин. На внешние КЗ они не реагируют, даже если нарушена фиксация присоединений.

Работа дифференциальной токовой защиты шин.

При КЗ на одной из систем шин сработают токовые реле общего пускового комплекта РТЗ и подадут оперативный ток на отключение шиносоединительного выключателя (реле РПЗ) и одновременно на токовые реле избирательных комплектов РТ1 и РТ2. Отключение выключателей присоединений поврежденной системы шин произойдет в результате срабатывания промежуточного реле соответствующего избирательного комплекта.

В случае нарушения установленной фиксации присоединений оба избирательных комплекта защиты могут сработать при внешнем КЗ, так как токи в них не балансируются. Однако это не приведет к отключению присоединений, поскольку постоянный ток на реле избирательных органов подается общим пусковым комплектом, в реле которого токи будут уравновешены, и он не сработает.

Если при нарушенной фиксации присоединений КЗ возникнет на одной из рабочих систем шин, то сработают все три комплекта защиты и отключатся обе системы шин. Для сохранения селективности действия защиты в случае изменения фиксации Присоединений необходимо переключение из одного избирательного комплекта в другой токовых и оперативных цепей присоединений, переведенных на другую рабочую систему шин.

В схеме защиты (рис. 2) предусмотрен рубильник «Нарушение фиксации присоединений», шунтирующий цепи постоянного тока обоих избирательных органов. Включением этого рубильника из схемы защиты исключаются контакты токовых реле РТ1 и РТ2 избирательных комплектов, рубильник включают перед началом операций с коммутационными аппаратами, нарушающих установленную фиксацию присоединений. Он должен быть также включен, когда в работе находится одна система шин и на нее включены все присоединения.

При включенном рубильнике защита действует на отключение сразу всех выключателей. Если рубильник будет включен при работе обеих систем шин и фиксированном распределении присоединений, то в случае КЗ на одной из систем шин защита неселективно подействует на отключение выключателей обеих систем шин непосредственно от общего комплекта.

Для опробования напряжением одной из систем шин с помощью ШСВ в схеме защиты предусмотрена автоматическая блокировка, замедляющая отключение выключателей присоединений рабочей системы шин в случае включения ШСВ на КЗ. Блокировка выполнена с помощью реле ПВ7, имеющего при возврате большую выдержку времени, чем время отключения ШСВ. Именно на это время реле РП4 снимает минус оперативного тока с реле РП1 и РП2 избирательных комплектов, благодаря чему они не смогут отключать выключатели присоединений. Импульс на отключение ШСВ подается без замедления от реле РПЗ, как только подействуют реле пускового комплекта. Если отключение ШСВ по какой-либо причине затянется, по истечении времени возврата реле ПВ7 произойдет отключение рабочей системы шин.

Рис. 2. Принципиальная схема дифференциальной токовой защиты двойной системы шин: 1 — ключ управления шиносоединительного выключателя В1 (ШСВ); 2 — то же обходного включателя В2 (ОВ). Контакты 1 и 2 замкнуты только на время включения, на рисунке они условно изображены как кнопки; 3 — кнопка, шунтирующая миллиамперметр; 4 — кнопка деблокировки сигнального реле; РТ1 — токовое реле избирательного комплекта I, системы шин; РТ2 — то же II системы шин; РТЗ — токовое реле общего комплекта; РТ0 — токовое реле сигнального комплекта; РП1—РП6 — промежуточные реле; PП0 — то же сигнального комплекта: ПВ7, ПВ8 — промежуточные реле с выдержкой времени; РВ0— реле времени сигнального комплекта; БИ9—БИ14 — испытательные блоки; С — рубильник нарушения фиксации; Н — накладки (отключающие устройства)

Аналогичная блокировка (реле ПВ8) предусмотрена и на случай опробования напряжением обходной системы шин с помощью обходного выключателя. На момент опробования вторичные цепи трансформаторов тока обходного выключателя должны быть выведены из схемы защиты (вынуты крышки испытательных блоков БИ9 и БИ10). Иначе возможное КЗ на обходной системе шин окажется внешним КЗ, и защита не сработает.

В эксплуатации не исключены обрывы или шунтирование вторичных цепей трансформаторов тока, к которым подключены реле защиты. В результате баланс токов в реле нарушается и они могут сработать даже при нормальном режиме работы подстанции.

Для предупреждения неправильной работы защиты предусмотрено устройство контроля исправности токовых цепей, выполненное при помощи токового реле РТ0 и миллиамперметра mA, включенных в нулевой провод трансформаторов тока. При некотором (опасном) значении тока небаланса устройство контроля срабатывает, выводит защиту из действия и оповещает персонал о неисправности. Постепенно развивающиеся повреждения в токовых цепях выявляются периодическими измерениями тока небаланса с помощью миллиамперметра при нажатии шунтирующей его кнопки 3.

ДЗШ принцип действия

ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА ШИН 110–220 КВ

Владимир Фурашов, технический директор
Николай Дони, заведующий отделом перспективных разработок
Вячеслав Исаев, заместитель заведующего отделом подстанционного оборудования ООО НПП «ЭКРА», г. Чебоксары

После распада СССР производитель защиты сборных шин типа ДЗШТ-220 [1] Рижский опытный завод «Энергоавтоматика» оказался за границей. В России для защиты сборных шин выпускались и выпускаются до сих пор панели на электромеханических реле. В 1995 году ООО НПП «ЭКРА» был разработан и выпускался до 2002 года шкаф типа ШЭ2307 дифференциальной токовой с торможением защиты сборных шин 110–220 кВ на микроэлектронной базе [2].
К сожалению, шкафы на микроэлектронной базе по многим параметрам не удовлетворяют современным требованиям, таким, как надежность, многофункциональность, удобство наладки и эксплуатации, наличие функций осциллографирования, возможность встраивания в АСУТП и т.д.


Шкаф ШЭ2607 061
с открытыми дверями

В левой части шкафа расположены три терминала БЭ2704 061 (каждый из них содержит одну фазу ДЗШ), в правой – испытательные блоки для оперирования с цепями тока и ключи в выходных цепях для ввода-вывода действия ДЗШ на отключение.


Шкаф ШЭ2607 061
с закрытыми дверями

Габариты конструкции:
высота 2100 мм
ширина 1200 мм
глубина 600 мм

После распада СССР производитель защиты сборных шин типа ДЗШТ-220 [1] Рижский опытный завод «Энергоавтоматика» оказался за границей. В России для защиты сборных шин выпускались и выпускаются до сих пор панели на электромеханических реле.
В 1995 году ООО НПП «ЭКРА» был разработан и выпускался до 2002 года шкаф типа ШЭ2307 дифференциальной токовой с торможением защиты сборных шин 110–220 кВ на микроэлектронной базе [2].
К сожалению, шкафы на микроэлектронной базе по многим параметрам не удовлетворяют современным требованиям, таким, как надежность, многофункциональность, удобство наладки и эксплуатации, наличие функций осциллографирования, возможность встраивания в АСУТП и т.д.

Новый этап в создании защиты шин

В 2003 году НПП «ЭКРА» на базе микропроцессорных терминалов серии БЭ2704 разработало, сдало межведомственной комиссии и запустило в серийное производство шкаф ШЭ2607 061 для защиты сборных шин напряжением 110–220 кВ с фиксированным подключением и изменяемой фиксацией присоединений («двойная система шин», «двойная система шин с обходной», «двойная секционированная система шин с обходной»).
При разработке шкафа ШЭ2607 061 ставилась задача максимально сохранить традиционную российскую идеологию защиты шин и обеспечить возможность работы как с электромеханическими защитами, так и с современными микропроцессорными защитами присоединений. При этом устройство резервирования при отказе выключателя (УРОВ) может быть либо традиционным централизованным, либо индивидуальным (распределенным), как это принято в шкафах серии ШЭ2607, выпускаемых НПП «ЭКРА».
С 2003 года по настоящее время произведено более 40 шкафов ШЭ2607 061, большая часть из которых включена в работу.

Особенности шкафа ШЭ2607 061

На схеме 1 показана схема защищаемого распределительного устройства. В шкафу ШЭ2607 061 из семнадцати защищаемых присоединений три выполнены с жесткой фиксацией – это шиносоединительный выключатель ШСВ (Q1), секционный выключатель 1-й системы шин СВ1 (Q3) и секционный выключатель 2-й системы шин СВ2 (Q4). Еще три присоединения – обходной выключатель ОВ (Q5) и две линии (Q17, Q18) имеют возможность перефиксации с одной системы шин на другую с помощью оперативных ключей на двери шкафа. Изменить фиксацию одиннадцати оставшихся присоединений (Q6–Q16) с одной системы шин на другую можно посредством программных ключей (накладок) шкафа.
Такое выполнение позволяет гибко настроить конфигурацию шкафа на соответствие первичной схеме соединений, уменьшить объем операций с токовыми блоками и оперативными ключами и, следовательно, снизить количество ошибок оперативного персонала.
Для выбора уставок ШЭ2607 061 можно воспользоваться электротехническим справочником [2] и работой института «Энергосетьпроект» [3], учитывая при этом рекомендации, приведенные в руководстве по эксплуатации шкафа.

Рис. 1. Характеристика срабатывания ДЗШ

Iд – дифференциальный ток;
Iт – тормозной ток;
Iд.0 – начальный ток срабатывания ДЗШ;
Iт.0 – ток начала торможения ДЗШ;
Кт – коэффициент торможения ДЗШ;
Кт = 0,6 (tg a); Кт = 1,2 (tg в)

Защита выполнена пофазной. Она содержит пусковые органы (ПО), действующие при КЗ на любой из систем шин (СШ), а также избирательные органы первой (ИО1) и второй (ИО2) систем шин, определяющие поврежденную СШ. Сигнал на отключение поврежденной СШ появляется только при срабатывании пускового и избирательного органов поврежденной фазы/фаз.
ПО через промежуточные трансформаторы тока подключены к основным трансформаторам тока всех присоединений обеих СШ, за исключением трансформаторов тока ШСВ. ИО1 и ИО2 с помощью тех же промежуточных трансформаторов тока подключены к основным трансформаторам тока присоединений соответственно первой и второй СШ, включая трансформаторы тока ШСВ.
Дифференциальный ток формируется как модуль геометрической суммы всех токов, поступающих на вход реле ДЗШ. Тормозной ток определяется как полусумма модулей всех токов, поступающих на вход реле ДЗШ.
На рисунке 1 приведена характеристика срабатывания ДЗШ при крайних значениях по начальному току срабатывания Iд0, току начала торможения Iт0, коэффициенту торможения Кт. При этом нижняя характеристика соответствует более чувствительным уставкам, а верхняя – более грубым. Применение торможения в сочетании с дополнительной отстройкой по форме тока позволяет выполнить ДЗШ, надежно работающую при погрешности трансформаторов тока до 30%.
Одновременная работа пускового и избирательного органов ДЗШ обеспечивает селективное отключение поврежденной системы (секции) шин при соответствии схемы ДЗШ схеме первичных соединений. В случае несоответствия схемы ДЗШ схеме первичных соединений (при ремонте и т.д.) возможен ручной перевод ДЗШ на отключение обеих систем (секций) шин, в так называемый режим «нарушения фиксации присоединения». В этом случае отключение СШ производится только от ПО.
Для надежного отключения выключателей СШ при работе ДЗШ, в том числе и в цикле АПВ шин, предусмотрены логические цепи «очувствления» с использованием реле ЧТО. Реле ЧТО включается на дифференциальный ток ПО, но обладает более высокой чувствительностью, чем ПО, т.к. при неуспешном АПВ токи КЗ могут быть значительно меньше расчетных для нормального эксплуатационного режима. Кроме того, реле ЧТО имеет функцию запоминания с помощью выдержки времени на возврат.
Выключатели отключаются с помощью групп выходных промежуточных реле, имеющихся для каждого выключателя. Выходные промежуточные реле каждого присоединения при срабатывании ДЗШ обеспечивают отключение выключателя через два соленоида отключения, пуск УРОВ (2 контакта) и запрет АПВ (2 контакта).
В шкафу ШЭ2607 061 есть возможность отключения СШ при действии УРОВ присоединений. Цепи воздействия от индивидуальных УРОВ обеспечивают отключение СШ в соответствии с тем, к какой из СШ подключено данное присоединение. Помимо этого, в защите предусмотрены два входа, которые воздействуют на отключение соответственно 1-й и 2-й систем шин от групповых УРОВ 1-й и 2-й систем шин.
Реле контроля исправности токовых цепей контролирует баланс токов в каждой фазе пускового и избирательных органов ДЗШ и при обрыве во вторичных токовых цепях с выдержкой времени обеспечивает сигнализацию о поврежденной фазе и блокировку работы ДЗШ с самоподхватом. При необходимости блокировка от обрыва цепей тока может быть выведена ключом на двери шкафа. Предусмотрена также кнопка деблокирования ДЗШ.
Для резервирования индивидуальных УРОВ для присоединений ШСВ, СВ1, СВ2 в шкафу ШЭ2607 061 дополнительно установлены три комплекта УРОВ для ШСВ, СВ1 и СВ2. Для этих выключателей реализуется принцип индивидуального УРОВ, как по схеме с дублированным пуском, так и по схеме с автоматической проверкой исправности выключателя. Каждый из комплектов УРОВ обеспечивает действие без выдержки времени на отключение резервируемого выключателя, а затем с выдержкой времени – на отключение выключателей «своей» системы шин и запрет АПВ.
В устройстве защиты логические цепи запрета АПВ шин действуют в режимах:

  • неуспешного АПВ шин;
  • неполнофазного или полнофазного отказа выключателя;
  • отключения от УРОВ;
  • оперативного запрета АПВ при работе ДЗШ.

Режим работы выбирается специальным ключом на двери шкафа.
Имеется возможность ручного опробования от ШСВ, СВ1, СВ2, ОВ четырех присоединений Q6…Q9 (линий). При этом для выключателей ШСВ, СВ1, СВ2 отключение при неуспешном опробовании производится от пускового органа ДЗШ или дополнительных реле тока в присоединениях, для обходного выключателя – от пускового органа ДЗШ, для присоединений Q6…Q9 – от пускового органа ДЗШ или чувствительного токового органа. Необходимый измерительный орган для опробования выбирается с помощью программируемых накладок.

Схема 1. Схема защищаемого распределительного устройства


Сервисные возможности шкафа

Шкаф ШЭ2607 061 оснащен функциями осциллографирования и регистрации, которые выполнены так же, как у всех терминалов серии БЭ2704: осциллографируются все аналоговые каналы (токи и напряжения, поступающие на вход каждого терминала) и 48 любых дискретных сигналов (входные и выходные дискретные сигналы, измерительные органы). Регистрироваться могут 128 любых дискретных сигналов.
Специальный программный комплект EKRASMS позволяет вести мониторинг текущих значений всех аналоговых и дискретных входных сигналов, менять уставки терминалов, анализировать базы данных регистрируемых сигналов.
Просмотр и анализ аварийных осциллограмм осуществляется с помощью программы WNDR32. В качестве примера на рисунке 2 показаны осциллограммы короткого замыкания на шинах подстанции 110 кВ. На левой осциллограмме показано срабатывание ДЗШ на 1-й системе шин, а на правой – срабатывание ДЗШ на 2-й системе шин, которое произошло через 180 мс после первого КЗ. Время срабатывания измерительных органов ДЗШ составило 15 мс, общее время ликвидации КЗ с учетом отключения выключателей – 90–120 мс.

Рис. 2. Осциллограмма КЗ на ПС «Каргали»

Выводы

Использование шкафа ШЭ2607 061 решает проблему отсутствия на российском рынке защиты сборных шин типа ДЗШТ-220. Основные принципы выполнения шкафа ШЭ2607 061 сохраняют традиционную российскую идеологию построения РЗА, поэтому ввод его в работу и эксплуатация не представляют сложностей для персонала.
Применение программы мониторинга EKRASMS и анализа осциллограмм WNDR32 облегчает работу эксплуатационного персонала как в нормальном режиме работы, так и при разборе аварийных процессов.

Литература

1. Таубес И.Р. Дифференциальная защита шин 110–220 кВ. – М.: Энергоатомиздат, 1984. – 96 с., ил. – (Б-ка электромонтера. Вып. 560).
2. Электротехнический справочник: В 4 т. Т.3. Производство, передача и распределение электрической энергии / Под общ. ред. В.Г. Герасимова и др. – 8-е изд., испр. и доп. – М.: Издательство МЭИ, 2002. – 964 с.
3. Расчеты защиты шин 110–220 кВ/ Работа № 3264тм-т4. – М.: Ин-т «Энергосетьпроект».

© ЗАО “Новости Электротехники”
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Назначение и принцип действия ДЗШ–110 (220) кВ.

Дифференциальная токовая защита шин 110 (220) кВ (далее ДЗШ) предназначена для отключения без выдержки времени всех видов повреждений, возникающих на системах шин 110 (220) кВ. Защита выполнена на дифференциальных реле, включенных на геометрическую сумму токов трансформаторов тока присоединений 110 (220) кВ.

Принцип действия дифференциальной токовой защиты основан на сравнении величины и фазы токов от ТТ всех присоединений, зафиксированных на данной системе шин. В нормальном режиме и при токах внешних КЗ, геометрическая сумма токов, протекающих через ТТ, близка к нулю (имеется ток небаланса). При КЗ в защищаемой зоне направление и величина токов изменяются, и в дифференциальном реле возникает ток, достаточный для срабатывания защиты.

В зону действия защиты входят шины 110 (220) кВ и оборудование присоединений 110 (220) кВ, ограниченное ТТ. Для нормальной схемы ОРУ-110 (220) кВ (схема ОВ-110 (220) кВ разобрана разъединителями) ТТ ОВ-110 (220) кВ исключены из схемы ДЗШ, отключение ОВ-110 (220) кВ от ДЗШ выведено накладкой.

Защита состоит из общего пускового и двух избирательных органов. При повреждении в защищаемой зоне любой системы шин срабатывают пусковой орган ДЗШ, а срабатыванием избирательного органа определяется поврежденная СШ-110 (220) кВ, в результате чего защита действует на отключение всех присоединений поврежденной системы шин.

При нарушении фиксации присоединений токи в плечах ДЗШ не балансируются и в избирательных органах протекает повышенный ток небаланса, вследствие чего защита может неправильно выбрать систему шин или отказать в действии. Для обеспечения правильной работы ДЗШ кВ при нарушении фиксации присоединений 110 (220) кВ необходимо избирательные органы выводить из действия. Защита шин в этом случае осуществляется только пусковым органом, который при возникновении повреждения подает импульс на отключение присоединений обеих систем шин. Вывод избирателей при нарушении фиксации производится рубильником Р2 – «ДЗШ без фиксации по оперативным цепям» на панели ДЗШ, рубильником или блоком БИ в шкафу ДЗШ на ОРУ-110 (220) кВ.

Нормально ДЗШ должна быть включена действием на отключение выключателей всех присоединений, по которым на шины может быть подано напряжение. С присоединений, постоянно работающих в тупиковом режиме (за исключением линий с двигательной нагрузкой), действие ДЗШ должно быть снято.

Для обеспечения чувствительности в режиме автоматического опробования системы шин после отключения короткого замыкания на шинах, ДЗШ дополнена чувствительным комплектом дифференциальной защиты шин 110 (220) кВ.

После отключения от ДЗШ выключателей присоединений систем шин, происходит их автоматическое повторное включение, для чего используются имеющиеся на указанных присоединениях устройства АПВ.

АПВ шин осуществляется в порядке, определяемом временем АПВ присоединений.

В ДЗШ имеется чувствительный комплект, нормально выведенный из работы. Чувствительный комплект вводится кратковременно, автоматически при срабатывании ДЗШ для надёжного отключения от ДЗШ первого опробующего шины присоединения при неуспешном АПВ СШ-110 (220) кВ, с запретом АПВ остальных присоединений данной СШ.

В нормальном режиме в токовых цепях реле ДЗШ протекает ток небаланса, который должен контролироваться с помощью миллиамперметра, установленного на панели ДЗШ. Величина тока небаланса не должна превышать 30-50 мА (в зависимости от местных условий может быть снижена до 20 мА).

В ДЗШ имеется устройство автоматического контроля целостности токовых цепей. При неисправностях токовых цепей, вызванных обрывом провода или ошибочном исключении трансформатора тока присоединения из схемы ДЗШ, автоматически с выдержкой времени 10÷20 секунд снимается “плюс” оперативного тока со схемы ДЗШ и выпадает блинкер РУ– «Неисправность токовых цепей ДЗШ», РУ – «Отсутствие оперативного тока ДЗШ» и загорается лампа ЛС – «Блинкер не поднят» на панели ДЗШ, а также загорается сигнальное табло «Неисправность ДЗШ» на панели ЦС.

Для возврата схемы в рабочее состояние после устранения неисправности необходимо нажать кнопку К2 – «Возврат схемы» на панели ДЗШ.

В режиме опробования обходной СШ от ОВ или 1 (2) СШ от ШСВ на ДЗШ должна быть введены накладка «Замедление ДЗШ при включении ОВ» или накладка «Замедление ДЗШ при включении ШСВ» соответственно. Введением этих накладок достигается следующее: при включении ключом управления выключателя (команда «включить») происходит кратковременная (до 1 сек) Замедление действия ДЗШ на отключение выключателей всех присоединений, кроме включаемого ОВ или ШСВ, чем предотвращается обесточение СШ в случае включения на КЗ.

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

ДЗШ принцип действия

ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА ШИН 110–220 КВ

Владимир Фурашов, технический директор
Николай Дони, заведующий отделом перспективных разработок
Вячеслав Исаев, заместитель заведующего отделом подстанционного оборудования ООО НПП «ЭКРА», г. Чебоксары

После распада СССР производитель защиты сборных шин типа ДЗШТ-220 [1] Рижский опытный завод «Энергоавтоматика» оказался за границей. В России для защиты сборных шин выпускались и выпускаются до сих пор панели на электромеханических реле. В 1995 году ООО НПП «ЭКРА» был разработан и выпускался до 2002 года шкаф типа ШЭ2307 дифференциальной токовой с торможением защиты сборных шин 110–220 кВ на микроэлектронной базе [2].
К сожалению, шкафы на микроэлектронной базе по многим параметрам не удовлетворяют современным требованиям, таким, как надежность, многофункциональность, удобство наладки и эксплуатации, наличие функций осциллографирования, возможность встраивания в АСУТП и т.д.


Шкаф ШЭ2607 061
с открытыми дверями

В левой части шкафа расположены три терминала БЭ2704 061 (каждый из них содержит одну фазу ДЗШ), в правой – испытательные блоки для оперирования с цепями тока и ключи в выходных цепях для ввода-вывода действия ДЗШ на отключение.


Шкаф ШЭ2607 061
с закрытыми дверями

Габариты конструкции:
высота 2100 мм
ширина 1200 мм
глубина 600 мм

После распада СССР производитель защиты сборных шин типа ДЗШТ-220 [1] Рижский опытный завод «Энергоавтоматика» оказался за границей. В России для защиты сборных шин выпускались и выпускаются до сих пор панели на электромеханических реле.
В 1995 году ООО НПП «ЭКРА» был разработан и выпускался до 2002 года шкаф типа ШЭ2307 дифференциальной токовой с торможением защиты сборных шин 110–220 кВ на микроэлектронной базе [2].
К сожалению, шкафы на микроэлектронной базе по многим параметрам не удовлетворяют современным требованиям, таким, как надежность, многофункциональность, удобство наладки и эксплуатации, наличие функций осциллографирования, возможность встраивания в АСУТП и т.д.

Новый этап в создании защиты шин

В 2003 году НПП «ЭКРА» на базе микропроцессорных терминалов серии БЭ2704 разработало, сдало межведомственной комиссии и запустило в серийное производство шкаф ШЭ2607 061 для защиты сборных шин напряжением 110–220 кВ с фиксированным подключением и изменяемой фиксацией присоединений («двойная система шин», «двойная система шин с обходной», «двойная секционированная система шин с обходной»).
При разработке шкафа ШЭ2607 061 ставилась задача максимально сохранить традиционную российскую идеологию защиты шин и обеспечить возможность работы как с электромеханическими защитами, так и с современными микропроцессорными защитами присоединений. При этом устройство резервирования при отказе выключателя (УРОВ) может быть либо традиционным централизованным, либо индивидуальным (распределенным), как это принято в шкафах серии ШЭ2607, выпускаемых НПП «ЭКРА».
С 2003 года по настоящее время произведено более 40 шкафов ШЭ2607 061, большая часть из которых включена в работу.

Особенности шкафа ШЭ2607 061

На схеме 1 показана схема защищаемого распределительного устройства. В шкафу ШЭ2607 061 из семнадцати защищаемых присоединений три выполнены с жесткой фиксацией – это шиносоединительный выключатель ШСВ (Q1), секционный выключатель 1-й системы шин СВ1 (Q3) и секционный выключатель 2-й системы шин СВ2 (Q4). Еще три присоединения – обходной выключатель ОВ (Q5) и две линии (Q17, Q18) имеют возможность перефиксации с одной системы шин на другую с помощью оперативных ключей на двери шкафа. Изменить фиксацию одиннадцати оставшихся присоединений (Q6–Q16) с одной системы шин на другую можно посредством программных ключей (накладок) шкафа.
Такое выполнение позволяет гибко настроить конфигурацию шкафа на соответствие первичной схеме соединений, уменьшить объем операций с токовыми блоками и оперативными ключами и, следовательно, снизить количество ошибок оперативного персонала.
Для выбора уставок ШЭ2607 061 можно воспользоваться электротехническим справочником [2] и работой института «Энергосетьпроект» [3], учитывая при этом рекомендации, приведенные в руководстве по эксплуатации шкафа.

Рис. 1. Характеристика срабатывания ДЗШ

Iд – дифференциальный ток;
Iт – тормозной ток;
Iд.0 – начальный ток срабатывания ДЗШ;
Iт.0 – ток начала торможения ДЗШ;
Кт – коэффициент торможения ДЗШ;
Кт = 0,6 (tg a); Кт = 1,2 (tg в)

Защита выполнена пофазной. Она содержит пусковые органы (ПО), действующие при КЗ на любой из систем шин (СШ), а также избирательные органы первой (ИО1) и второй (ИО2) систем шин, определяющие поврежденную СШ. Сигнал на отключение поврежденной СШ появляется только при срабатывании пускового и избирательного органов поврежденной фазы/фаз.
ПО через промежуточные трансформаторы тока подключены к основным трансформаторам тока всех присоединений обеих СШ, за исключением трансформаторов тока ШСВ. ИО1 и ИО2 с помощью тех же промежуточных трансформаторов тока подключены к основным трансформаторам тока присоединений соответственно первой и второй СШ, включая трансформаторы тока ШСВ.
Дифференциальный ток формируется как модуль геометрической суммы всех токов, поступающих на вход реле ДЗШ. Тормозной ток определяется как полусумма модулей всех токов, поступающих на вход реле ДЗШ.
На рисунке 1 приведена характеристика срабатывания ДЗШ при крайних значениях по начальному току срабатывания Iд0, току начала торможения Iт0, коэффициенту торможения Кт. При этом нижняя характеристика соответствует более чувствительным уставкам, а верхняя – более грубым. Применение торможения в сочетании с дополнительной отстройкой по форме тока позволяет выполнить ДЗШ, надежно работающую при погрешности трансформаторов тока до 30%.
Одновременная работа пускового и избирательного органов ДЗШ обеспечивает селективное отключение поврежденной системы (секции) шин при соответствии схемы ДЗШ схеме первичных соединений. В случае несоответствия схемы ДЗШ схеме первичных соединений (при ремонте и т.д.) возможен ручной перевод ДЗШ на отключение обеих систем (секций) шин, в так называемый режим «нарушения фиксации присоединения». В этом случае отключение СШ производится только от ПО.
Для надежного отключения выключателей СШ при работе ДЗШ, в том числе и в цикле АПВ шин, предусмотрены логические цепи «очувствления» с использованием реле ЧТО. Реле ЧТО включается на дифференциальный ток ПО, но обладает более высокой чувствительностью, чем ПО, т.к. при неуспешном АПВ токи КЗ могут быть значительно меньше расчетных для нормального эксплуатационного режима. Кроме того, реле ЧТО имеет функцию запоминания с помощью выдержки времени на возврат.
Выключатели отключаются с помощью групп выходных промежуточных реле, имеющихся для каждого выключателя. Выходные промежуточные реле каждого присоединения при срабатывании ДЗШ обеспечивают отключение выключателя через два соленоида отключения, пуск УРОВ (2 контакта) и запрет АПВ (2 контакта).
В шкафу ШЭ2607 061 есть возможность отключения СШ при действии УРОВ присоединений. Цепи воздействия от индивидуальных УРОВ обеспечивают отключение СШ в соответствии с тем, к какой из СШ подключено данное присоединение. Помимо этого, в защите предусмотрены два входа, которые воздействуют на отключение соответственно 1-й и 2-й систем шин от групповых УРОВ 1-й и 2-й систем шин.
Реле контроля исправности токовых цепей контролирует баланс токов в каждой фазе пускового и избирательных органов ДЗШ и при обрыве во вторичных токовых цепях с выдержкой времени обеспечивает сигнализацию о поврежденной фазе и блокировку работы ДЗШ с самоподхватом. При необходимости блокировка от обрыва цепей тока может быть выведена ключом на двери шкафа. Предусмотрена также кнопка деблокирования ДЗШ.
Для резервирования индивидуальных УРОВ для присоединений ШСВ, СВ1, СВ2 в шкафу ШЭ2607 061 дополнительно установлены три комплекта УРОВ для ШСВ, СВ1 и СВ2. Для этих выключателей реализуется принцип индивидуального УРОВ, как по схеме с дублированным пуском, так и по схеме с автоматической проверкой исправности выключателя. Каждый из комплектов УРОВ обеспечивает действие без выдержки времени на отключение резервируемого выключателя, а затем с выдержкой времени – на отключение выключателей «своей» системы шин и запрет АПВ.
В устройстве защиты логические цепи запрета АПВ шин действуют в режимах:

  • неуспешного АПВ шин;
  • неполнофазного или полнофазного отказа выключателя;
  • отключения от УРОВ;
  • оперативного запрета АПВ при работе ДЗШ.

Режим работы выбирается специальным ключом на двери шкафа.
Имеется возможность ручного опробования от ШСВ, СВ1, СВ2, ОВ четырех присоединений Q6…Q9 (линий). При этом для выключателей ШСВ, СВ1, СВ2 отключение при неуспешном опробовании производится от пускового органа ДЗШ или дополнительных реле тока в присоединениях, для обходного выключателя – от пускового органа ДЗШ, для присоединений Q6…Q9 – от пускового органа ДЗШ или чувствительного токового органа. Необходимый измерительный орган для опробования выбирается с помощью программируемых накладок.

Схема 1. Схема защищаемого распределительного устройства


Сервисные возможности шкафа

Шкаф ШЭ2607 061 оснащен функциями осциллографирования и регистрации, которые выполнены так же, как у всех терминалов серии БЭ2704: осциллографируются все аналоговые каналы (токи и напряжения, поступающие на вход каждого терминала) и 48 любых дискретных сигналов (входные и выходные дискретные сигналы, измерительные органы). Регистрироваться могут 128 любых дискретных сигналов.
Специальный программный комплект EKRASMS позволяет вести мониторинг текущих значений всех аналоговых и дискретных входных сигналов, менять уставки терминалов, анализировать базы данных регистрируемых сигналов.
Просмотр и анализ аварийных осциллограмм осуществляется с помощью программы WNDR32. В качестве примера на рисунке 2 показаны осциллограммы короткого замыкания на шинах подстанции 110 кВ. На левой осциллограмме показано срабатывание ДЗШ на 1-й системе шин, а на правой – срабатывание ДЗШ на 2-й системе шин, которое произошло через 180 мс после первого КЗ. Время срабатывания измерительных органов ДЗШ составило 15 мс, общее время ликвидации КЗ с учетом отключения выключателей – 90–120 мс.

Рис. 2. Осциллограмма КЗ на ПС «Каргали»

Выводы

Использование шкафа ШЭ2607 061 решает проблему отсутствия на российском рынке защиты сборных шин типа ДЗШТ-220. Основные принципы выполнения шкафа ШЭ2607 061 сохраняют традиционную российскую идеологию построения РЗА, поэтому ввод его в работу и эксплуатация не представляют сложностей для персонала.
Применение программы мониторинга EKRASMS и анализа осциллограмм WNDR32 облегчает работу эксплуатационного персонала как в нормальном режиме работы, так и при разборе аварийных процессов.

Литература

1. Таубес И.Р. Дифференциальная защита шин 110–220 кВ. – М.: Энергоатомиздат, 1984. – 96 с., ил. – (Б-ка электромонтера. Вып. 560).
2. Электротехнический справочник: В 4 т. Т.3. Производство, передача и распределение электрической энергии / Под общ. ред. В.Г. Герасимова и др. – 8-е изд., испр. и доп. – М.: Издательство МЭИ, 2002. – 964 с.
3. Расчеты защиты шин 110–220 кВ/ Работа № 3264тм-т4. – М.: Ин-т «Энергосетьпроект».

© ЗАО “Новости Электротехники”
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Лекция 10. РЕЛЕЙНАЯ ЗАЩИТА СБОРНЫХ ШИН

10.2 Дифференциальная защита шин

10.3 Мероприятия по повышению надежности ДЗШ

10.1 Защита шин

Повреждения на шинах подстанций электрических сетей и электростанций высокого и сверхвысокого напряжений могут быть отключены резервными РЗ, установленными на противоположной стороне элементов, подключенных к этим шинам (рис. 2.36). Однако резервные РЗ в подобных случаях работают со значительными выдержками времени t рез.з и не всегда обеспечивают селективное отключение поврежденных шин. В то же время КЗ на шинах по условиям устойчивости энергосистемы и работы потребителей требуют быстрого отключения. Характерным примером неселективного действия резервных РЗ ЛЭП может служить подстанция с двумя выключателями на каждом присоединении (рис. 2.36). При КЗ, например, на первой (7) системе шин (СШ) РЗ 1 и 2 отключают соответствено выключатели Q1 и Q2, лишая питания обе СШ (I и II), хотя при данной схеме соединений имеется возможность сохранить в работе всю подстанцию, отключив только выключатели Q3 и Q4. Такая л иквидация повреждения может быть обеспечена только с помощью специальной РЗ шин. Для прекращения КЗ на шинах их РЗ должна действовать на отключение всех присоединений, питающих шины. В связи с этим специальные РЗ шин приобретают особую ответственность, так как их неправильное действие приводит к отключению целой электростанции или подстанции либо их секций. Поэтому принцип действия РЗ шин и их практическое выполнение (монтаж) должны отличаться повышенной надежностью, исключающей возможность их ложного срабатывания.

Рисунок 10.1 – Схема подстанции с двумя выключателями на каждом присоединении. Выключатели, отключаемые защитой при КЗ на первой (I) системе шин заштрихованы

В качестве быстродействующей и селективной РЗ шин получила распространение защита, основанная на дифференциальном принципе .

10.2 Дифференциальная защита шин

Дифференциальная РЗ шин (ДЗШ) основывается на том же принципе, что и рассмотренные ранее дифференциальные РЗ ЛЭП, трансформаторов и генераторов, т. е. на сравнении значений и фаз токов, приходящих к защищаемому элементу (в данном случае к шинам ПС) и уходящих от него. Для питания ДЗШ на всех присоединениях устанавливаются ТТ с одинаковым коэффициентом трансформации Ki (независимо от мощности присоединения).

Дифференциальное реле 1 подключается к ТТ всех присоединений, так чтобы при первичных токах, направленных к шинам, в нем проходил ток, равный сумме токов всех присоединений, т. е. I р = E I пр . Тогда при внешних КЗ E I пр = 0 и реле не будет действовать, а при КЗ в зоне (на шинах) EI пр равна сумме токов КЗ, притекающих к месту повреждения, и ДЗШ работает. Первичные обмотки всех ТТ подключаются к шинам одноименными зажимами; все вторичные обмотки ТТ

соединяются параллельно одноименной полярностью, и к ним подключается реле 1.

При внешнем КЗ ток КЗ I 4 , идущий от шин к месту КЗ по поврежденной ЛЭП W4, равен сумме токов, притекающих к шинам от источников питания (по линиям W1, W2, W3):

Из токораспределения, показанного на рис. 10.1, видно, что вторичные токи I 1в , I 2в и I 3в , соответствующие первичным токам, притекающим к шинам, направлены в обмотке реле противоположно вторичному току I 4в (первичный ток которого утекает от шин).

Защита не будет действовать при условии, что ток срабатывания реле будет больше максимального тока небаланса, возникающего при Iк.max во время внешнего КЗ:

При КЗ на шинах по всем присоединениям, имеющим источники питания (генераторы), ток КЗ направляется к месту повреждения, т.е. к шинам подстанции. Вторичные токи направлены в обмотке реле одинаково, поэтому ток в реле равен их сумме:

При КЗ на шинах ДЗШ реагирует на полный ток I К в месте КЗ. Защита будет действовать, если I к > I с.з.

В нормальном режиме сумма токов, приходящих к шинам, всегда равна сумме токов, отходящих от шин, поэтому ток в реле равен нулю: / р = 0. Из-за погрешности ТТ в реле появляется ток небаланса, который невелик в нормальном режиме и увеличивается при внешнем КЗ.

10.3 Мероприятия по повышению надежности и чувствительности ДЗШ

Ограничение тока небаланса. Ток небаланса может вызвать неправильную работу РЗ, поэтому принимаются меры к ограничению его значения. Для уменьшения тока небаланса необходимо уменьшить разность между намагничивающим током I4нам ТТ на поврежденном присоединении, по которому проходит наибольший ток КЗ, и суммой намагничивающих токов I1нам + I2нам + I3нам остальных присоединений (W1, W2, W3). I нам ТТ зависит от значения его вторичной ЭДС Е2 (рис. 2.37). Чем больше ток КЗ, проходящий через ТТ, тем больше Е2, а следовательно, и ток Iнам. При внешнем КЗ наибольший ток проходит через ТТ поврежденного присоединения, поэтому его Iнам и погрешность максимальны.

По ТТ остальных присоединений проходит лишь часть этого тока , благодаря чему их токи намагничивания значительно меньше. Особенно неблагоприятным является такое соотношение вторичных ЭДС, при котором ТТ поврежденного присоединения работают в насыщенной части (точка 4 на рис. 2.37), а все остальные – в прямолинейной части характеристики намагничивания (точки 1, 2 и 3). При этих условиях разница токов намагничивания имеет наибольшее значение. Поэтому для уменьшения небаланса нужно обеспечить условия, при которых все ТТ работают при внешних КЗ в ненасыщенной части характеристики.

Рисунок 10.2 – Характеристика намагничивания трансформатора тока дифференциальной защиты

С этой целью необходимо: а) применять однотипные ТТ , у

которых насыщение происходит при возможно больших токах Iк; наилучшими с этой точки зрения являются ТТ класса Р(Д), которые и рекомендуется применять для ДЗШ; б) уменьшать кратность тока Iк к номинальному току ТТ, увеличивая их коэффициент трансформации К1; в) уменьшать нагрузку на ТТ, уменьшая ZH и вторичный ток Iв; первое достигается за счет увеличения сечения и сокращения длины соединительных проводов, а второе – применением одноамперных ТТ или вспомогательных трансформаторов, понижающих ток в соединительных проводах. Выбор ТТ и определение допустимой нагрузки Zн на них производится по кривым предельной кратности токов при 10 %-ной погрешности.

Отстройка дифференциальных реле от тока небаланса.

Для улучшения отстройки от повышенных токов небаланса в неустановившемся режиме, когда они могут достигать больших значений за счет влияния апериодической составляющей тока КЗ, сильно намагничивающей сердечник ТТ, в ДЗШ, так же как и в других дифференциальных РЗ, применяются реле с насыщающимися ТТ. Последние не пропускают в реле апериодическую составляющую Iнб. Защита выполняется с помощью реле типа РНТ-565 – при одинаковых коэффициентах трансформации ТТ или типа РНТ-567 – в схемах с ТТ, имеющими разные коэффициенты трансформации. Реле РНТ567 имеет две независимые рабочие обмотки W1 и W2 и выполняется в двух модификациях – на 5 и 1 А вторичного тока. Разработана схема более совершенной ДЗШ с торможением типа ДЗШТ, которая обеспечивает лучшую отстройку от 1нб при внешних КЗ и может применяться, когда простая ДЗШ не удовлетворяет требованиям чувствительности. Контроль исправности токовых цепей. В случае обрыва или шунтирования фазы вторичной цепи ТТ одного из присоединений ток от оборванной или зашунтированной фазы не поступает в дифференциальные реле, в результате чего ДЗШ может неправильно сработать и отключить всю подстанцию или электростанцию. Для предупреждения неправильной работы

ДЗШ под влиянием тока нагрузки оборванной фазы дифференциальные реле отстраиваются от тока нагрузки наиболее загруженного присоединения. Кроме того, в нулевом проводе дифференциальных реле устанавливается чувствительное токовое реле КАО, которое, срабатывая, при обрыве или шунтировании фазы вторичной цепи с выдержкой времени выводит ДЗШ из действия и подает предупредительный сигнал. Реле КАО дополняется миллиамперметром Ртп А, при помощи которого можно обнаружить не только обрыв, но и ухудшение контакта в цепи какой-нибудь фазы или витковое замыкание в ТТ, вызывающее увеличение тока небаланса в нулевом проводе.

1. Виды защит сборных шин и требования к ним.

2. Дифференциальная защита сборных шин. Выбор тока срабатывания.

3. Мероприятия по повышению надежности дифференциальной защиты шин.

4. Схемы дифференциальных защит шин.

5. Защита сборных шин с помощью отсечки и дистанционной защиты.

6. Защита сборных шин с трансформаторами тока, имеющими повышенную погрешность.

Читайте также:  Элемент пельтье принцип работы
Ссылка на основную публикацию
Adblock
detector