Индукционный регулятор принцип работы - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (голосов: 1, средняя оценка: 5,00 из 5)
Загрузка...

Индукционный регулятор принцип работы

ответы к экзамену / пацантрэ / 1-25 / 18 Индукционный регулятор напряжения и фазовращатель

18 Индукционный регулятор напряжения

Индукционные регуляторы напряжения представляют собой заторможенный асинхронный двигатель с фазным ротором. Им можно регулировать напряжение в широких пределах. Статорная и роторная обмотки в регуляторе соединены электрически, но так, чтобы они могли быть смещены относительно друг друга поворотом ротора.

Индукционный регулятор напряжения

При подключении индукционного регулятора к сети вращающийся магнитный поток наводит в обмотках статора и ротора ЭДС E1 и E2. При совпадении осей в обмотках ЭДС E1 и E2 совпадают по фазе, а на выходных зажимах регулятора устанавливается максимальное значение напряжения.

При повороте ротора оси обмоток поворачиваются на некоторый угол a. На такой же угол смещается и вектор E2. При этом напряжение на выходе уменьшается. Поворотом ротора на угол 180° мы устанавливаем на выходе минимальное напряжение.

Трехфазный индукционный регулятор служит для регулирования напряжения трехфазной сети переменного тока. Обмотка регулятора включается по схеме автотрансформатора, и регулятор представляет собой поворотный автотрансформатор.

Рис. 12.2. Индукционный регулятор: а – схема соединения обмоток; б – векторная диаграмма напряжений

В качестве первичной обмотки обычно используют обмотку ротора (рис. 12.2); которую включают в трехфазную сеть.

Вторичной обмоткой в этом случае является статорная обмотка, которая включается в сеть последовательно с нагрузкой. Вращающееся магнитное поле индуктирует в обмотках статора и ротора эдс и , которые суммируются геометрически и подаются на зажимы нагрузки. При повороте ротора будет изменяться взаимное положение осей одноименных фаз статора и ротора и, следовательно, будет изменяться фаза эдс ротора ; фаза эдс неизменна, так как . В соответствии с этим выходное напряжение автотрансформатора будет изменяться плавно от до (рис. 12.2, б).

Первичная сторона фазорегулятора присоединяется к сети, а вторичная к сопротивлению нагрузки , как показано на рис. 12.1.

Угол b – это электрический угол поворота оси фазы обмотки ротора относительно оси фазы обмотки статора.

Статорная обмотка, включенная в сеть, создает вращающееся магнитное поле, которое индуктирует эдс в обмотках статора и ротора. Эдсстаторной обмотки уравновешивается напряжением сети , а эдс роторной обмотки подводится к нагрузке.

Фаза эдс роторной обмотки зависит от угла поворота ротора: если оси одноименных фаз статора и ротора совпадают, то эдс совпадет по фазе с эдс , так как вращающееся поле пересекает оси одноименных фаз статора и ротора одновременно.

Рис. 12.1. Асинхронная машина в режиме фазорегулятора: а – схема; б – векторная диаграмма напряжений

Если ротор повернуть в направлении вращения магнитного поля на угол b, то максимум потокосцепления и эдс в фазах ротора будет отставать отэдс фаз статора на тот же угол b (рис. 12.1, б). Таким образом, при повороте ротора фаза выходного напряжения () будет плавно меняться, а действующее значение эдс будет неизменным.

Фазорегулятор представляет собой поворотный трансформатор с регулируемой фазой вторичного напряжения относительно первичного. Фазорегуляторы находят применение главным образом в лабораториях, например, при испытаниях счетчиков электрической энергии, ваттметров.

ИССЛЕДОВАНИЕ ИНДУКЦИОННОГО РЕГУЛЯТОРА

Цель работы: изучить конструкцию и принцип действия индукционного регулятора

Индукционный регулятор представляет собой асинхронную машину с заторможенным ротором, регулирующую напряжение в широких пределах.

В роторе регулятора помещается фазная обмотка. Напряжение регулируется поворотом ротора. При этом изменяется сдвиг фаз между ЭДС, которые создаются вращающимся магнитным полем в фазах обмоток статора и ротора.

Для поворота и торможения ротора служит червячная передача с самоторможением (в такой передаче тангенс угла наклона винтовой линии червяка меньше коэффициента, трения).

Схема трехфазного индукционного регулятора показана на рисунке 30.1.

Схема соединения индуктивного регулятора

Рисунок 30.1 – Схема трехфазного индукционного регулятора

Обмотки статора началами фаз подключены к трем проводам сети источника энергии с напряжением . К той же сети через скользящие контакты щеток и колец подключена трехфазная обмотка ротора, соединенная звездой. Обмотки статора концами фаз соединены с сетью приемника энергии, напряжение которой может изменяться в широких пределах с помощью индукционного регулятора,

Возможна схема регулятора, при которой обмотки статора соединены звездой (или треугольником), а обмотки ротора включены между сетями источника и приемника энергии. Недостаток такой схемы – наличие двух комплектов контактных колец. Для устранения скользящих контактов обмотки ротора соединяют гибкими проводниками с сетями приемника и источника энергии, а на роторе ставят ограничитель» не позволяющий повернуть ротор на 360°.

При включении регулятора в сеть U трехфазная обмотка ротора создает вращающееся магнитное ноле, которое индуктирует ЭДС в фазах обмоток статора ( ) и ротора ( ). Если пренебречь падением напряжения в активном и индуктивном сопротивлениях обмотки ротора, то для фазных значений приложенного напряжения и ЭДС ротора можно записать, что

Читайте также:  Освещение смотровой ямы на СТО

(справедливо для любого положения ротора).

Таким образом, вектор ЭДС равен и противоположен вектору при любом положении ротора в пространстве.

Если ротор занимает такое положение, при котором оси катушек статора и ротора совпадают, то и ЭДС, индуктируемые вращающимся магнитным полем: в обмотках статора и ротора, также, совпадают по фазе, то есть вектор совпадает с вектором и направлен противоположно вектору .

Если повернуть ротор на какой-либо угол по направлению вращения магнитного поля, то силовые линии вращающегося поля пересекают витки катушек статора раньше, чем витки катушек ротора. Тогда ЭДС статора опережает по фазе ЭДС ротора, то есть вектор ЭДС статора неизменный по величине, окажется повернутым на угол , относительно неизменного вектора , равного вектору с обратным знаком.

При повороте ротора против поля ЭДС статора будет отставать по фазе от ЭДС ротора. Изменяя угол поворота ротора, мы будем менять угол между векторами фазных ЭДС статора и ротора, и если непрерывно поворачивать ротор, то вектор ЭДС статора будет изменять свое положение так, что конец этого вектора опишет окружность радиусом из точки А, являющейся концом вектора , как это показано на векторной диаграмме (рисунок 30.3),

Рисунок 30. 3 – Векторная диаграмма для одной фазы индукционного регулятора

построенной для одной фазы регулятора.

Напряжение зависит не только от приложенного напряжения но также и от ЭДС статора так что оно определится как геометрическая сумма и то есть = + .

Численное значение напряжения:

При повороте ротора от 0 до 180° может быть получено любое напряжение на выходе в пределах от , (при – 0°) до (при = 180).

Если выполнить регулятор с коэффициентом трансформации равным единице, то есть то и и, следовательно, такой регулятор дает возможность регулировать напряжение на выходе в пределах от нуля до двойного напряжения сети.

Возможность равномерного изменения напряжения в широких пределах – очень ценное свойство, благодаря которому этот регулятор широко применяют. Однако регулятор обладает рядом недостатков, которые выражаются в следующем:

1) регулируемое напряжение изменяется не только по величине, но и по фазе, что не позволяет включать этот регулятор параллельно с каким-либо другим регулятором;

2) на валу регулятора создаются большие вращающие моменты, вызывающие необходимость в громоздкой механической передаче с самоторможением;

3) обмотки регулятора имеют большие индуктивные сопротивления, которые приводят к значительному изменению напряжения при колебаниях нагрузки;

4) за счет наличия воздушного зазора между статором и ротором в регуляторе, так же как и в любой асинхронной машине, оказывается большим реактивный намагничивающий ток, и регулятор имеет низкий .

Первые два недостатка – изменение фазы напряжения и механические силы на валу регулятора – в устройствах большой мощности устраняются сдвоенными регуляторами, векторы ЭДС статорных обмоток которых поворачиваются в противоположных направлениях при повороте ротора.

Характер изменения вторичного напряжения при повороте ротора показан на рисунок 30.4.

Рисунок 30.4 – Изменения вторичного напряжения при повороте ротора регулятора

Векторная диаграмма напряжений регулятора при заданном угле поворота ротора, приведена на рисунок 30.5.

Рисунок 30.5 – Векторная диаграмма напряжений регулятора при заданном угле поворота ротора

Индукционный регулятор может быть использован и для регулировки угла сдвига фаз между двумя напряжениями. Достаточно переключить обмотки регулятора, как это показано на рисунке 30.6.

Рисунок 30.6 – Трехфазный поворотный трансформатор регулятор фаз

Векторная диаграмма напряжений регулятора, соответствующая такой схеме включения, приведена на рисунке 30.7.

Рисунок 30.7 – Векторная диаграмма напряжений регулятора фаз при заданном угле поворота ротора

Следует иметь в виду, что регулятор используют при автотрансформаторной схеме и, следовательно, его регулируемая или выходная мощность , отдаваемая приемникам энергии, не равна номинальной или габаритной мощности .

Между этими мощностями так же, как в автотрансформаторе, имеет место следующее соотношение:

или

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Где применяются индукционные регуляторы?

2. Как могут быть включены обмотки регулятора и к чему это приводит?

3. Для чего необходима в конструкции индукционного регулятора червячная передача с самоторможением?

4. Чем отличается схема включения обмоток регулятора для изменения фазы, от схемы для изменения напряжения?

5. Чем определяется номинальная мощность на выходе индукционного регулятора?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 10036 – | 7813 – или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

мтомд.инфо

Индукционные регуляторы напряжения представляют собой заторможенный асинхронный двигатель с фазным ротором. Им можно регулировать напряжение в широких пределах. Статорная и роторная обмотки в регуляторе соединены электрически, но так, чтобы они могли быть смещены относительно друг друга поворотом ротора.

Читайте также:  Принцип работы проходного выключателя

Индукционный регулятор напряжения

При подключении индукционного регулятора к сети вращающийся магнитный поток наводит в обмотках статора и ротора ЭДС E1 и E2. При совпадении осей в обмотках ЭДС E1 и E2 совпадают по фазе, а на выходных зажимах регулятора устанавливается максимальное значение напряжения.

При повороте ротора оси обмоток поворачиваются на некоторый угол a . На такой же угол смещается и вектор E2. При этом напряжение на выходе уменьшается. Поворотом ротора на угол 180° мы устанавливаем на выходе минимальное напряжение.

Индукционные регуляторы напряжения серии ИР

Регуляторы напряжения серии ИР (табл. 1, 2) предназначены для плавного регулирования напряжения на нагрузке в широких пределах при неизменном напряжении питающей сети. В условном обозначении регуляторов после наименования серии — букв ИР — следуют двухзначные цифры, определяющие над чертой диаметр сердечника статора (габарит) в сантиметрах и под чертой — длину сердечника статора в сантиметрах; далее следует обозначение климатического исполнения и категории размещения по ГОСТ 15150-69.

Технические данные индукционных регуляторов напряжения ИР климатического исполнения УЗ

Регуляторы имеют вертикальное исполнение. Обмотки статора и ротора выполнены из прямоугольного провода; пазы открытые; в сердечниках имеются вентиляционные аксиальные каналы; лобовые части обмоток прикреплены к бандажным кольцам. В регуляторах ИР 99 и ИР 118 в пазы статора заложены термометры сопротивлений.

Подшипники ротора располагаются в подшипниковых щитах. На нижнем щите находится фланец для крепления регуляторов к фундаментной плите. Ограничение угла поворота ротора достигается упором роговой втулки, насаженной на его вал, в приливы с резиновыми амортизаторами, расположенными на верхнем подшипниковом щите.

Технические данные индукционных регуляторов напряжения серии ИР климатического исполнения Т4

Механизм дистанционного управления приводится в движение асинхронным двигателем. Вращающий момент от асинхронного двигателя передается на вал ротора регулятора через понижающий редуктор и зубчатые (ИР 99 и ИР 118) или червячные (ИР 59, ИР 74) секторы, которые соединены с роговой втулкой предохранительными шпильками. При аварийных режимах шпильки срезаются, предотвращая поломку зубьев привода.

Внутри корпуса размещены конечные выключатели двигателя привода, положением которых устанавливают предельные углы поворота ротора регулятора, необходимые для достижения заданного напряжения на нагрузке.

Схемы соединения обмоток статора и ротора индукционных регуляторов серии ИР

I — сторона сети; II — сторона нагрузки

Cхема 1 — однофазная нормальная трансформаторная; применяется для преобразования высшего напряжения в низшее и регулирования в заданных пределах.
Cхема 2 — однофазная нормальная автотрансформаторная (см. автотрансформатор); применяется для регулирования напряжения на нагрузке в пределах от 0 до 2С/С (где UQ — напряжение сети).
Схема 3 — однофазная специальная автотрансформаторная; применяется для регулирования напряжения на нагрузке в пределах от 0 до 1,5Uc.
Схема 4 — трехфазная нормальная автотрансформаторная; применяется для регулирования напряжения на нагрузке в пределах от 0 до 2UC.
Схема 5 — трехфазная специальная автотрансформаторная; применяется для регулирования напряжения на нагрузке в пределах от 0 до 1,5Uc.
Схема 6 — трехфазная специальная автотрансформаторная; применяется для регулирования напряжения на нагрузке в пределах от 0 до (2 + 3)£/с.
Схема 7 — трехфазная специальная трансформаторная; применяется для преобразования высшего напряжения в низшее и регулирования в заданных пределах.
Схема 8 — трехфазная специальная с соединением обмоток статора и ротора в двойной треугольник (соединение треугольником); применяется для регулирования напряжения на нагрузке в пределах от О до С/с.

Индукционные регуляторы напряжения серии ИР

Напряжения

И индукционные регуляторы

Фазорегуляторы

Асинхронные двигатели специального назначения

Отечественная промышленность выпускает большое число АД специального назначения, т. е. предназначенных для работы с конкретными типами приводных механизмов в бытовых приборах, в системах автоматики, в металлургической промышленности и т. п. Эти АД, как правило, существенно отличаются от АД общего назначения конструктивным исполнением, техническими данными и характеристиками, которые соответствуют специфическим требованиям того или иного приводного механизма.

Описание и технические данные АД специального назначения помещены во втором томе Справочника в разделах, соответствующих их основному назначению (краново-ме-таллургические двигатели, взрывобезопас-ные, погружные, бытовые и т. п.).

Индукционные регуляторы напряжения и фазорегуляторы (фазовращатели) представляют собой асинхронные машины с заторможенным фазным ротором, в которых с помощью поворотного устройства можно изменять положение ротора относительно статора. Намагничивающий ток соединенной с сетью обмотки создает магнитный поток, который наводит ЭДС во вторичной обмотке. Фаза ЭДС меняется в зависимости от

взаимного положения осей первичной и вторичной обмоток.

В фазорегуляторах на нагрузку подается напряжение от вторичной обмотки, неизменное по амплитуде и меняющееся по фазе в зависимости от угла поворота ротора.

Читайте также:  Как поставить интернет розетку

В индукционных регуляторах происходит суммирование первичного и вторичного напряжений, при этом изменение фазы ЭДС вторичной обмотки, происходящее при повороте ротора, вызывает изменение напряжения на нагрузке регулятора (см. § 9.1).

Регуляторы напряжения серии ИР (табл. 9.83, 9.84) предназначены для плавного регулирования напряжения на нагрузке в широких пределах при неизменном напряжении питающей сети.

В условном обозначении регуляторов после наименования серии — букв ИР — следуют двухзначные цифры, определяющие над чертой диаметр сердечника статора (габарит) в сантиметрах и под чертой — длину сердечника статора в сантиметрах; далее следует обозначение климатического исполнения и категории размещения по ГОСТ 15150-69.

Регуляторы имеют вертикальное исполнение. Обмотки статора и ротора выполнены из прямоугольного провода; пазы открытые; в сердечниках имеются вентиляционные аксиальные каналы; лобовые части обмоток прикреплены к бандажным кольцам. В регуляторах ИР 99 и ИР 118 в пазы статора заложены термометры сопротивлений.

Подшипники ротора располагаются в подшипниковых щитах. На нижнем щите находится фланец для крепления регуляторов к фундаментной плите. Ограничение угла поворота ротора достигается упором роговой втулки, насаженной на его вал, в приливы с резиновыми амортизаторами, расположенными на верхнем подшипниковом щите.

Таблица 9.83. Технические данные индукционных регуляторов напряжения ИР климатического исполненияУЗ

Механизм дистанционного управления приводится в движение АД. Вращающий момент от АД передается на вал ротора регулятора через понижающий редуктор и зубчатые (ИР 99 и ИР 118) или червячные (ИР 59, ИР 74) секторы, которые соединены с роговой втулкой предохранительными шпильками. При аварийных режимах шпильки срезаются, предотвращая поломку зубьев привода.

Внутри корпуса размещены конечные выключатели двигателя привода, положением которых устанавливают предельные углы поворота ротора регулятора, необходимые для достижения заданного напряжения на нагрузке.

Технические данные регуляторов ИР

указаны при работе с коэффициентом мощности нагрузки, равным 0,8. При работе с коэффициентом мощности нагрузки, меньшим 0,8, номинальный ток снижается в соответствии с данными, приведенными ниже:

Отношение тока нагрузки

к номинальному току 0,93 0,88 0,85

Продолжение Коэффициенты мощности нагрузки регуляторов

менее Отношение тока нагрузки

к номинальному току 0,82 0,81 0,8

Таблица 9.84. Технические данные индукционных регуляторов напряжения серии ИР

Дата добавления: 2015-06-27 ; Просмотров: 961 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Индукционный регулятор напряжения и фазорегулятор

Индукционный регулятор напряжения (ИР) представляет собой асинхронную машину с фазным ротором, предназначенную для плавного регулиро­вания напряжения. Рассмотрим работу трехфазного ИР, получившего преимущественное применение. Ротор ИР заторможен посредством червячной пере­дачи, которая не только удерживает его в заданном положении, но и позволяет плавно поворачивать его относительно статора. Обмотки статора и ротора в ИР имеют автотрансформаторную связь (рис. 17.1, а), поэтому ИР иногда называют поворотным авто­трансформатором.

Напряжение сети U1подводится к обмотке ротора, при этом ротор создает вращающееся магнитное поле, наводящее в обмотке ротора ЭДС = – , а в об­мотке статора — ЭДС (рис. 17.2, а).

Фазовый сдвиг этих ЭДС относительно друг друга зависит от взаимного пространственного по­ложения осей обмоток статора и ротора, определяе­мого углом α. При α = 0 оси обмоток совпадают, вращающееся поле одновременно сцепляется с обеими обмотками и ЭДС и совпадают по фазе (при этом и находятся в противофазе). При α = 180 эл. град ЭДС и окажутся в про­тивофазе ( и совпадают по фазе). Если пре­небречь внутренними падениями напряжения, то напряжение на выходе ИР определяется геометриче­ской суммой:

= ­­+ (17.1)

При повороте ротора концы векторов и описывают окружность (рис. 17.2, б), при этом изменяется от = при α = 0 до = + при α = 180 эл. град (рис. 17.2, в). Поворот ротора осуществляется либо вручную штурвалом, либо дистанционно включением исполнительного двигателя.

ИР применяются во всех случаях, где необходима плавная ре­гулировка напряжения, например в лабораторных исследованиях.

Фазорегулятор (ФР). Предназначен для изменения фазы вто­ричного напряжения относительно первичного при неизменном вторичном напряжении. В отличие от ИР об­мотки ротора и статора ФР электрически не соединены друг с дру­гом, т. е. имеют транс­форматорную связь (см. рис. 17.1, б),поэтому ФР иногда называют поворотным транс­форматором.

Изменение фазы вторичного напряже­ния осуществляется поворотом ротора от­носительно статора. Первичной обмоткой в ФР обычно является обмотка статора. Фазорегуляторы приме­няются в устройствах автоматики (для фазового управления) и измерительной технике

( для проверки ваттметров и счетчиков).

Рис. 17.1. Схемы соединения индукционного

регулятора напряжения (а) и фазорегулятора (б)

Читайте далее:
Ссылка на основную публикацию
Adblock
detector