Какой прибор используется для измерения электрической мощности - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Какой прибор используется для измерения электрической мощности

Приборы для измерения мощности

Мощность цепи электрического тока можно определить косвенным методом, измерив ток и напряжение (рис. 5) и найдя их произведение

Приемник энергии

Рис. 5. Схема для измерения мощности амперметром и вольтметром.

Этот способ обладает рядом недостатков, заключающихся:

1) в необходимости при каждом измерении производить вычисление, требующее затраты времени;

2) в значительной относительной погрешности при измерении мощности, равной сумме относительных погрешностей измерения напряжения и измерения тока;

3) в невозможности производить измерение при изменяющихся значениях тока и напряжения вследствие невозможности произвести одновременный отсчет по двум приборам и др.

Электродинамический ваттметр. Для непосредственного измерения мощности в цепи электрического тока применяется электродинамический ваттметр.

Электродинамический ваттметр (рис. 6) представляет собой измерительный механизм электродинамической системы. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии.

Рис. 6. Схема устройства и соединений электродинамического ваттметра

Угол поворота подвижной части ваттметра

где I ─ ток последовательной катушки;

Iu ─ ток параллельной катушки ваттметра.

Так как вследствие применения добавочного резистора параллельно цепи ваттметра имеет практически постоянное сопротивление ru , то

Таким образом, по углу поворота подвижной части ваттметра можно судить о мощности цепи. Шкала ваттметра, как следует из уравнения (2), равномерна.

Приборы для измерения количества электричества. Электрические счетчики

Электрические счетчики представляют собой интегрирующие приборы, предназначенные для измерения электрической энергии и количества протекающего электричества за некоторый промежуток времени.

Счетчики, так же как и показывающие приборы, делятся на системы. Наибольшее распространение получили счетчики электрической энергии индукционной системы для цепей переменного тока и электродинамической системы для цепей постоянного тока.

Основное отличие счетчиков от показывающих приборов заключается в том, что угол поворота подвижной части их не ограничивается пружиной, а имеет нарастающее значение, причем каждому обороту подвижной части счетчика соответствует определенное значение измеряемой величины.

Для регистрации электрической энергии или количества электричества каждый счетчик имеет счетный механизм, представляющий собой, по существу, счетчик оборотов, соединенный с подвижной частью зубчатой передачей.

Индукционные счетчики активной энергии однофазного тока.

На рис. 7 дана схема устройства и соединения индукционного счетчика отечественного производства типа СО.

Счетчик состоит из последовательного А и параллельного Б электромагнитов, алюминиевого диска Д, укрепленного на оси, и постоянного тормозного магнита М.

При включении счетчика в цепь переменного тока по его последовательной обмотке (цепи) будет проходить ток потребителей энергии, вследствие чего в последовательном электромагните возникает магнитный поток ФI. Напряжение U на обмотке параллельного электромагнита вызовет в ней ток Iu, и в сердечнике электромагнита будет поддерживаться магнитный поток Фu, состоящий из двух частей: рабочего Фup и вспомогательного ФuB. Магнитный поток последовательного электромагнита и рабочий поток параллельного электромагнита, пронизывая диск, индуктируют в нем вихревые токи (рис. 7). Вращающий момент, возникающий от взаимодействия вихревых токов с магнитными потоками, заставит вращаться диск Д счетчика.

Следовательно, числом оборотов диска счетчика можно измерять электрическую энергию.

Рис. 7. Схема устройства и соединения индукционного счетчика.

Рис. 8. Схема устройства счетного механизма.

Число оборотов диска счетчика или пропорциональная ему электрическая энергия регистрируется счетным механизмом (рис. 8). Движение диска счетчика через червячную передачу и шестерни передается пяти роликам, на боковых поверхностях которых нанесены цифры от 0 до 9. Ролики свободно надеты на ось А. Первый (см. рис. 8 – правый) ролик скреплен с шестерней и при движении диска счетчика беспрерывно вращается. Один оборот его вызывает поворот второго ролика на 1/10 часть оборота. Один оборот второго ролика вызывает поворот третьего ролика также на 1/10 часть оборота и т. д. Ролики прикрываются алюминиевым щитком с отверстиями, через которые видно только по одной цифре на каждом ролике. Таким образом, прочитанное через отверстия в щитке числовое значение даст величину энергий, зарегистрированную счетчиком за весь период его работы, начиная с момента, когда показания его соответствовали нулевому значению.

Для нахождения энергии, израсходованной за какое-то время, нужно из показания счетчика в конце измерения вычесть показания, снятые вначале. На щитке счетчика всегда указывается передаточное число счетчика С, т. е. число оборотов диска счетчика, соответствующее единице энергии, регистрируемой счетчиком, – например, 1 кВт • ч равен 4 000 оборотов диска.

Индукционные счетчики активной энергии в цепях трехфазного тока

Для измерения электрической энергии в четырехпроводных цепях применяются трехэлементные счетчики. Схема включения такого счетчика (рис. 9) принципиально та же, что и ваттметра. Как показывает название, такой счетчик имеет три электромагнитные системы, которые воздействуют или на три диска, укрепленных на одной оси (например, счетчик типа СА4-ТЧ), или на два диска, также укрепленных на одной оси (например, счетчик типа СА4-И45, в котором на один диск воздействуют две системы, на второй – одна). Счетчик имеет один счетный механизм. Устройство каждой электромагнитной системы трехэлементного счетчика ничем не отличается от устройства электромагнитной системы однофазного счетчика.

Рис. 9. Схема устройства и соединения трехэлементного

трехдискового счетчика типа СА4-ТЧ

Наиболее распространенными приборами для измерения электрической энергии в трехпроводных цепях трёхфазного тока являются двухэлементные счетчики.

Двухэлементный счетчик имеет две электромагнитные системы, которые воздействуют на два диска, укрепленных на одной оси (например, счетчик типа САЗ-И43, рис. 10).

Рис. 10. Схема устройства и соединения двухэлементного двухдискового счетчика типа САЗ-И43

Ваттметры – виды и применение, схема подключения, особенности использования

Каждый потребитель, питаемый от электрической сети, потребляет какую-то мощность. Мощность характеризует в данном случае скорость выполнения электрической сетью работы, необходимой для функционирования того или иного прибора либо цепи, которая от этой сети питается. Разумеется, сеть должна быть в состоянии обеспечить данную мощность и не быть при этом перегруженной, иначе может случиться авария.

Для измерения потребляемой мощности в цепях переменного тока используют специальные приборы — ваттметры. Ваттметры показывают текущую потребляемую мощность, а некоторые из них способны даже подсчитать количество энергии в киловатт-часах, израсходованной за определенное время, пока потребитель работал. В данной статье мы рассмотрим несколько основных видов ваттметров.

Ваттметры находят применение в самых разных сферах промышленности и быта, особенно в электроэнергетике и в машиностроении. Кроме того ваттметры часто полезны в быту.

Их используют для определения мощности различной бытовой техники, для расчета приблизительной стоимости электроэнергии в месяц, для диагностики приборов, для тестирования сетей, да и просто в качестве наглядных индикаторов. Есть щитовые ваттметры, ваттметры в виде сетевых адаптеров, цифровые и аналоговые ваттметры.

Принцип работы данных приборов в общем виде прост: измеряются напряжение питания и потребляемый ток, а мощность определяется как произведение данных величин с учетом коэффициента мощности исследуемой цепи. Коэффициент мощности определяется по разности фаз между током и напряжением. Цифровые ваттметры отображают показания на дисплее или записывают их в цифровой форме, а аналоговые — показывают стрелкой на шкале.

Аналоговые ваттметры

К аналоговым устройства относятся ваттметры электродинамической системы. Их работа основана на взаимодействии пары катушек, первая из которых неподвижна, а вторая — подвижна, то есть может отклоняться в сторону. Неподвижная катушка связана с током, а подвижная — с напряжением.

Неподвижная катушка имеет небольшое число витков и включается в цепь измерения мощности последовательно, в то время как подвижная катушка имеет значительно большее количество витков и включается через резистор параллельно исследуемому прибору.

Чем больший ток проходит по неподвижной катушке — тем сильнее ее магнитное поле отклоняет подвижную катушку, связанную со стрелкой. Шкала прибора отградуирована в ваттах. Как вы уже поняли, здесь автоматически учитываются и ток, и напряжение, и коэффициент мощности цепи.

Схема подключения ваттметра:

Схема подключения ваттметра с крышки прибора Д5065:

Цифровые ваттметры

Цифровой ваттметр работает совершенно иначе. Ток измеряется косвенным путем по закону Ома посредством оценки падения напряжения на калиброванном шунте, а напряжение — по схеме цифрового вольтметра. Датчиком тока может быть не обязательно шунт, но и трансформатор тока.

Измеренные схемой мгновенные параметры тока и напряжения обрабатываются микропроцессором, который вычисляет на основе этих данных потребляемую мощность, а также величину суммарной электроэнергии, которая была израсходована потребителем за время проведения замеров. Результат отображается на цифровом дисплее прибора.

Аналоговые приборы часто можно встретить в виде щитовых, модульных изделий, а цифровые — в виде профессионального оборудования и портативных устройств.

Бытовой ваттметр

Очень распространенный пример простого цифрового ваттметра — бытовой ваттметр в виде сетевого адаптера — переходника. Он предназначен для наблюдения мощности потребления, а также для оперативной оценки стоимости электроэнергии в домашних условиях. Ваттметр вставляется в ту розетку, от которой обычно питается прибор, потребление которого необходимо узнать. Затем в розетку ваттметра втыкается вилка самого прибора.

По нажатии соответствующей кнопки, ваттметр начинает отсчет времени и запись количества потребленной с этого момента электроэнергии, то есть той энергии, которая была отдана через его розетку. Тут же считается стоимость электроэнергии, если предварительно задана цена киловатт-часа. Пока прибор работает а ваттметр измеряет мощность, стоимость на дисплее периодически обновляется. Ваттметры такого типа способны измерять мощности до 3600 Вт.

Читайте также:  Ввод электричества в дом со столба

Стоит вставить прибор в розетку и воткнуть в него вилку — на дисплее тут же начинается отсчет времени и в режиме реального времени отображается потребляемая мощность. При помощи кнопок можно переключить отображаемый параметр с мощности — на ток, на напряжение, посмотреть пиковую мощность, минимальную мощность и т. д.

Кроме того на дисплее можно увидеть частоту переменного тока в розетке. Задав стоимость киловатт-часа электроэнергии, при помощи бытового ваттметра можно оценить стоимость электроэнергии, потребляемой холодильником, компьютером, вентилятором, кондиционером, обогревателем, водонагревателем и т. д.

Профессиональные ваттметры

Профессиональные ваттметры отличаются расширенным функционалом и повышенным классом точности. Данные приборы позволяют тестировать более простые измерительные приборы, а сами способны измерять мощности в значительно более широком диапазоне величин токов, напряжений и частот нежели бытовые.

Профессиональный ваттметр стоит дороже, как любой стационарный прибор подобного класса, просто в силу повышенных требований к точности и качеству измерений. Зачастую профессиональные ваттметры не критичны к форме тока, они могут измерять переменный и постоянный, синусоидальной, прямоугольный, пульсирующий и пилообразный токи, вычислять при этом мощность потребления с указанием коэффициента мощности и характера нагрузки (активная, индуктивная, емкостная, смешанная). Выпускаются как для работы с однофазными цепями, так и для трехфазных.

Аналоговый ваттметр в составе профессионального лабораторного измерительного комплекта К540:

Щитовые ваттметры

Для осуществления замеров и индикации активной и реактивной мощности в сетях трехфазного или однофазного переменного тока, полезны щитовые встраиваемые ваттметры. Значение текущей мощности индикатор показывает в виде цифр на своем дисплее, который может иметь обычно до четырех разрядов для обеспечения достаточно высокой точности. Прибор имеет вид своеобразной измерительной головки, монтируемой в корпус.

Привычное применение ваттметров данного вида — индикаторные панели различных электротехнических устройств, работающих в сетях с частотой 50 Гц, то есть такие, где ваттметр установлен стационарно и больше не снимается. Возможно сопряжение ваттметра с электронными схемами, которые корректируют работу цепи в которой он установлен в зависимости от динамики активной или реактивной мощности потребления.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Как определить потребляемую мощность электроприбора?

Электричество в массовом масштабе используется во всех сферах современной жизни. Необходимая эксплуатационная гибкость электросети обеспечивается использованием розеток к которым подключаются те или иные приборы. Мощность подключаемого устройства не должна превышать определенного максимального значения.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Проблема правильной эксплуатации бытовой электрической сети

С конструктивной точки зрения бытовая электрическая сеть отработана до высокой степени совершенства: ее нормальная эксплуатация не требует специальных знаний.

Сеть рассчитана на определенные условия эксплуатации, нарушение которых приводит к полному или частичному отказу, а в тяжелых случаях – к возникновению пожара.

Условие правильной эксплуатации – отсутствие перегрузки.

При этом нагрузочная способность розеток и потребление подключаемой к ним техники измеряется различными единицами:

  • для розеток это максимально допустимый переменный ток (6 А у традиционных советских розеток старого жилого фонда, 10 или даже 16 А у розеток европейского стиля);
  • подключаемое оборудование характеризуются мощностью, которая измеряется в Ваттах (для мощных устройств вместо Ватт указываются более крупные единицы: киловатты (1 кВт = 1000 Вт), что позволяет не путаться в многочисленных нулях).

Отсюда возникает необходимость:

  • определения связи мощности и тока;
  • нахождения мощности отдельного электрического прибора.

Связь между Ваттами и Амперами проста и следует прямо из приведенного выше определения Ватта. Задача упрощается тем, что напряжение исправной бытовой сети всегда одинаково (220 или 230 В). Отсюда по току всегда находится мощность.

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U 2 /R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

Рисунок 1. Лицевая панель бытового счетчика электроэнергии с оптическим индикатором

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Ваттметром

Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:

  • включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
  • оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
  • отличается хорошими массогабаритными показателями.

Прибор готов к работе немедленно после включения.

Рис. 2. Цифровой бытовой ваттметр

Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Замер токовыми клещами

Наиболее удобны для использования токовые клещи, которые не требуют разрыва контролируемой цепи. Выполнены как ручное устройство с измерительным узлом на основе тороидального сердечника. Для замера тока узел раскрывают на манер губок клещей, после чего закрывают с охватом провода, рисунок 3. Действующее значение тока находится по изменению магнитного поля, которое фиксируется датчиком Холла.

Рис. 3. Измерение токовыми клещами

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Заключение

Как видим, мощность электроприборов может быть определена различными способами. Выбор конкретного из них зависит от уровня технической подготовки пользователя и наличия у него необходимых приборов, а доступность нескольких из них вполне может привлекаться как средство контроля правильности выполнения расчетов и измерений.

Простота реализации любого из рассмотренных способов позволяет гарантировать отсутствие перегрузки силовых розеток и достаточно быстро и довольно точно определять фактический потребляемый ток в том случае, если у электрического устройства отсутствуют паспортные данные.

Читайте также:  Правильное расположение розеток и выключателей в квартире

Ваттметр для измерения мощности: назначение, типы, подключение, применение

Один из параметров, который характеризует состояние электрической сети – это ее мощность. Она отражает величину работы, выполняемую электрическим током в единицу времени. Мощность устройств, включаемых в электрическую цепь, должна быть в рамках мощности сети. Иначе возможны неприятные сюрпризы – от выхода из строя оборудования до короткого замыкания и пожара.

Измеряют мощность электрического тока специальным прибором – ваттметром. И если в цепи постоянного тока она рассчитывается простым умножением силы тока на напряжение (достаточно наличия вольтметра и амперметра), то в сети переменного тока без измерительного оборудования не обойтись. Также им контролируют режим работы электрического оборудования и учитывают расход энергии.

Применение Ваттметров

Основная область применения – это электроэнергетическая промышленность и машиностроение, мастерские по ремонту электроприборов. Однако достаточно широко используют и бытовые измерители, которые приобретают любители электроники, компьютеров и просто обыватели – для учета и экономии энергопотребления.

Применяют ваттметры для:

  • Определения мощности приборов;
  • Тестирования электрических сетей, и их отдельных участков;
  • Испытаний электрических установок (как показывающие приборы);
  • Контроля работы оборудования;
  • Учета расхода электроэнергии.

Типы ваттметров

Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи.

В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые.

Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт).

Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора.

Видео о ваттметре из Китая:

Устройство и принцип действия

Аналоговые ваттметры

Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы.

Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная.

Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое.

Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками).

При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол.

Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени.

Цифровые ваттметры

В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов.

Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства.

Рисунок — Схема подключения Ваттметра

Подключение Ваттметра

Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения).

Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети.

Рассмотрим несколько ваттметров разного исполнения и разных производителей:

Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1

Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже.

Пределы измерения тока Iп:

  • на постоянном и переменном токе: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10 А.
  • постоянный ток: 1-3-7,5-15-30-75-150-300-450-700-1000 В.
  • переменный ток: 1-3-7,5-15-30-75-150-300-450-700 В.

Пределы измерения мощности соответственно Uп* Iп

Пределы измерения частоты от 40 до 5000Гц.

  • приведенная погрешность измерения тока, напряжения и мощности на постоянном токе ±0,1%;
  • приведенная погрешность измерения тока и напряжения на переменном токе в диапазоне частот от 40 до 1500Гц ±0,1%;
  • приведенная погрешность измерения мощности на переменном токе в диапазоне частот от 40 до 1000Гц ±0,1%;
  • относительная погрешность измерения частоты в диапазоне частот от 40 до 5000Гц ±0,003%;

Габаритные размеры 225х100х205 мм. Масса не более 1кг. Потребляемая мощность не более 5Вт.

Ваттметры многофункциональные СМ3010 выпускаются по ТУ 4221-047-16851585-2014, соответствуют требованиям ТР ТС 004/2011, ТР ТС 020/2011.

Устройства измерительные ЦП8506-120 (далее – устройства).

Предназначены для измерения активной, реактивной, активной и реактивной трехфазных трехпроводных цепей переменного тока, отображения текущего значения измеряемой мощности на цифровом индикаторе и преобразования его в аналоговый выход-ной сигнал (далее – выходной сигнал).

Измеренные значения отображаются в цифровой форме на встроенных индикаторах. Отображение измеренных величин на цифровых индикаторах производится в единицах измеряемой величины, поступающей непосредственно на вход устройства, или в единицах измеряемой величины, поступающей на вход трансформаторов тока и напряжения с учетом коэффициентов трансформации, в ваттах, киловаттах, мегаваттах, варах, киловарах, мегаварах. Цифровые индикаторы имеют по четыре значащих разряда.

  • для измерения активной и реактивной мощности в трехфазных трехпроводных электрических цепях переменного тока частотой от 45 до 55 Гц

Краткие технические характеристики ЦП8506-120 (Ваттметр)

Варметр щитовой цифровой трехфазный:

  • Коэффициент мощности: для ваттметра cos φ=1, для варметра sin φ=1
  • Габаритные размеры: 120х120х150 мм
  • Высота знака: 20 мм
  • Максимальный диапазон отображения: 9999
  • Класс точности: 0,5
  • Время преобразования: не более 0,5 с
  • Рабочая температура: +5 … +40 град С (О4.1), -40…+50 град С (УХЛ3.1)
  • Степень защиты по передней панели: IP40
  • Потребляемая мощность: 5ВА
  • Масса: не более 1,2 кг

Ваттметр Д5085 (Д 5085, Д-5085)

Предназначен для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Габариты не более (205±1,45)х(290±1,6)х(135±2,0) мм.

Класс точности 0,2.

Ваттметры Д5085 предназначены для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Ваттметры Д5085 предназначены для эксплуатации в условиях умеренного климата в закрытых сухих отапливаемых помещениях, при температуре окружающего воздуха от 10 до 35 °С и относительной влажности до 80 % (при 25 °С ).

Ваттметры Д5085 -04.1 (тропическое исполнение) предназначены для эксплуатации в условиях как сухого, так и влажного тропического климата в закрытых помещениях с кондиционированным или частично кондиционированным воздухом при температуре окружающего воздуха от 1 до 45 °C и относительной влажности до 80 % при температуре 25 °С (по ГОСТ 15150-69).

Технические данные

Ваттметры Д5085 соответствуют классу точности 0,2 по ГОСТ 8476-78.

Номинальный коэффициент мощности ваттметра – 1,0.

Номинальный ток параллельной цепи ваттметра Д5085 равен (5 ± 0,1) mА. Нормальная область частот ваттметра от 45 до 500 Гц, рабочая область частот – 500-1000 Гц.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением напряжения на ± 20 % от номинального значения либо от пределов нормальной области напряжений, при неизменном значении измеряемой мощности равен ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением частоты от верхней границы нормальной области до любого значения в рабочей области частот, не превышает ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной изменением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочих температур на каждые 10 °С изменения температуры, равен ±0,2% от конечного значения диапазона измерений. Нормальная температура – 20±2 °С, если на лицевойчасти прибора не оговорено иное значение.

Ещё одно видео о встраиваемом ваттметре:

Методы измерения мощности в электрических цепях

Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.

Общие сведения

При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.

Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.

Мощность потребителя

Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду). Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее. Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.

Читайте также:  Как правильно разместить розетки в спальне

Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr ©) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.

Сила тока

Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром. Для этого его нужно подключать последовательно в электрическую цепь.

Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10^(18) электронов.

Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.

Электрическое напряжение

Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.

Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).

При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.

Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.

Сопротивление электрической цепи

Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:

  1. Проводниками.
  2. Полупроводниками.
  3. Диэлектриками.

К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.

Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.

В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.

Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.

Методы измерения

Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.

При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.

Косвенный способ

Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.

Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:

  1. Для участка электрической цепи: P = I * I * R = U * U / R.
  2. Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).

Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.

Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.

Прямое определение величины

Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.

Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.

По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:

Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.

При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.

Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.

Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.

Читайте далее:
Ссылка на основную публикацию
Adblock
detector