Классификация материалов по электрическим свойствам - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Классификация материалов по электрическим свойствам

Классификация материалов по электрическим свойствам

В процессе изготовления и в различных условиях эксплуатации на электроматериалы воздей­ствуют электрическое и магнитное поля в отдельности и совместно. По поведению в электрическом поле эти материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.

Классификация электроматериалов по электрическим свойствам основана на представлениях зонной теории электропроводности твердых тел. Сущность этой теории состоит в следующем.

В изолированном атоме электроны вращаются вокруг ядра на определенных орбитах. На каждой орбите может находиться не более двух электронов. Каждой орбите соответствует строго определенное значение энергии, которой может обладать электрон, т. е. каждая орбита представляет собой опреде­ленный энергетический уровень. Под воздействием притяжения по­ложительно заряженного атомного ядра электроны стремятся занять ближайшие к ядру уровни с минимальным значением энергии. Поэтому нижние энергетические уровни оказываются заполненными электронами, а верхние уровни – свободными. Электрон может скачкообразно перейти с нижнего энергетического уровня W1 на другой свободный уровень W2 (рис. 2.1). Для этого электрону необходимо сообщить дополнительную энергию . Если свободных уровней в атоме нет, то электрон не может изменить свою энергию, поэтому не участвует в создании электропроводности.

В кристаллической решетке, состоящей из нескольких атомов, отдельные энергетические уровни расщепляются на подуровни, ко­торые образуют энергетические зоны (см. рис. 2.1). При этом рас­щепляются свободные и заполненные энергетические уровни. Зона, заполненная электронами, называется валентной. Верхний уровень валентной зоны обозначается Wv. Свободная зона называется зо­ной проводимости. Нижний уровень зоны проводимости обознача­ется Wc. Промежуток между валентной зоной и зоной проводимос­ти называют запретной зоной W. Значение запретной зоны существенно влияет на свойства материалов.

Рис 2.11 Диаграмма энергических уровней изолированного атома (1) и твердого тела (2).

Если W равна или близка к нулю, то электроны могут перейти на свободные уровни благодаря собственной тепловой энергии и увеличить проводимость вещества. Вещества с такой структурой энергетических зон относят к проводникам. Типичными проводниками являются металлы.

Если значение запретной зоны превышает несколько электрон-вольт (1 эВ – энергия электрона, полученная им при перемещении между двумя точками электрического поля с разностью потенциалов 1В), то для перехода электронов из валентной зоны в зону про­водимости требуется значительная энергия. Такие вещества относят к диэлектрикам. Диэлектрики имеют высокое удельное электрическое сопротивление.

Если значение запретной зоны составляет 0,1. 0,3 эВ, то электроны легко переходят из валентной зоны в зону проводимости благодаря внешней энергии. Вещества с управляемой проводимостью относят к полупроводникам.

Проводниковые материалы служат для проведения электричес­кого тока.

Обычно к проводникам относят вещества с удельным электрическим сопротивлением р менее Ом*м.

Диэлектрические материалы обладают способностью препятствовать прохождению тока.

К диэлектрическим материалам относят вещества с удельным электрическим сопротивлением р более 10 7 Ом*м. Благодаря высо­кому удельному электрическому сопротивлению их используют в качестве электроизоляционных материалов.

В зависимости от структуры и внешних условий материалы могут переходить из одного класса в другой. Например, твердые и жидкие металлы – проводники, а пары металлов – диэлектрики; типичные при нормальных условиях полупроводники германий и кремний при воздействии высоких гидростатических давлений становятся проводниками; углерод в модифи­кации алмаза – диэлектрик, а в модификации графита – проводник.

Полупроводниковые материалы обладают проводимостью, с помощью которой можно управлять напряжением, температурой, освещенностью и т.д.

Удельное электрическое сопротивление полупроводников со­ставляет Ом*м.

Основным свойством вещества по отношению к электрическо­му полю является электропроводность.

Электропроводность характеризуется удельной электрической проводимостью и удельным электрическим сопротивлением р:

(2)

J – плотность тока; y – удельная электрическая проводимость, См/м; Eнапряженность электрического поля, В/м; р = 1 /y – удельное электрическое со­противление, Ом-м.

Значения удельной электрической проводимости у и удельного электрического сопротивления р у разных материалов существен­но различаются. В сверхпроводящем состоянии удельное электри­ческое сопротивление материалов равно нулю, а у разреженных газов стремится к бесконечности.

Дата добавления: 2015-10-19 ; просмотров: 759 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Классификация электротехнических материалов

Материал – это объект, обладающий определенным составом, структурой и свойствами, предназначенный для выполнения определенных функций. Материалы могут иметь различное агрегатное состояние: твердое, жидкое, газообразное или плазменное.

Функции, которые выполняют материалы, разнообразны: обеспечение протекания тока (в проводниковых материалах), сохранение определенной формы при механических нагрузках (в конструкционных материалах), обеспечение изоляции (в диэлектрических материалах), превращение электрической энергии в тепловую (в резистивных материалах). Обычно материал выполняет несколько функций. Например, диэлектрик обязательно испытывает какие-то механические нагрузки, то есть является конструкционным материалом.

Материаловедение – наука, занимающаяся изучением состава, структуры, свойств материалов, поведением материалов при различных воздействиях: тепловых, электрических, магнитных и т.д., а также при сочетании этих воздействий.

Электротехническое материаловедение – это раздел материаловедения, который занимается материалами для электротехники и энергетики, т.е. материалами, обладающими специфическими свойствами, необходимыми для конструирования, производства и эксплуатации электротехнического оборудования.

Материалы играют определяющую роль в энергетике. Например, изоляторы высоковольтных линий. Исторически первыми придумали изоляторы из фарфора. Технология их изготовления достаточно сложна, капризна. Изоляторы получаются довольно громоздкими и тяжелыми. Научились работать со стеклом – появились стеклянные изоляторы. Они легче, дешевле, их диагностика несколько проще. И, наконец, последние изобретения – это изоляторы из кремнийорганической резины.

Первые изоляторы из резины были не очень удачны. На их поверхности с течением времени образовывались микротрещины, в которых набивалась грязь, образовывались проводящие треки, затем изоляторы пробивались. Подробное изучение поведения изоляторов в электрическом поле проводов высоковольтных линий (ВЛ) в условиях внешних атмосферных воздействий позволило подобрать ряд добавок, улучшивших атмосферостойкость, стойкость по отношению к загрязнениям и действию электрических разрядов. В результате сейчас создан целый класс легких, прочных изоляторов на различные уровни воздействующего напряжения.

Для сравнения, вес подвесных изоляторов для ВЛ 1150 кВ сопоставим с весом проводов в пролете между опорами и составляет несколько тонн. Это вынуждает ставить дополнительные параллельные гирлянды изоляторов, что увеличивает нагрузку на опору. Требуется использовать более прочные, а значит более массивные опоры. Это увеличивает материалоемкость, большой вес опор значительно поднимает расходы на монтаж. Для справки, стоимость монтажа составляет до 70% стоимости строительства линии электропередач. На примере видно, как один элемент конструкции влияет на конструкцию в целом.

Таким образом, электротехнические материалы (ЭТМ) являются одним из определяющих факторов технико-экономических показателей любой системы электроснабжения.

Основные материалы, которые используются в энергетике, можно разделить на несколько классов – это проводниковые материалы, магнитные материалы и диэлектрические материалы. Общим для них является то, что они эксплуатируются в условиях действия напряжения, а значит и электрического поля.

Проводниковыми называют материалы, основным электрическим свойством которых является сильно выраженная по сравнению с другими электротехническими материалами электропроводность. Их применение в технике обусловлено в основном этим свойством, определяющим высокую удельную электрическую проводимость при нормальной температуре.

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Однако для большинства металлов температура плавления высока, и только ртуть, имеющая температуру плавления около минус 39 °С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками при повышенных температурах.

Читайте также:  Нужно ли оставлять зазор между листами гипсокартона?

Газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы.

Важнейшими для электротехники свойствами проводниковых материалов являются их электро- и теплопроводность, а также способность генерации термоЭДС.

Электропроводность характеризует способность вещества проводить электрический ток (смотрите – Электропроводность веществ). Механизм прохождения тока в металлах обусловлен движением свободных электронов под воздействием электрического поля.

Полупроводниковыми называют материалы, которые являются по своей удельной проводимости промежуточными между проводниковыми и диэлектрическими материалами и отличительным свойством которых является исключительно сильная зависимость удельной проводимости от концентрации и вида примесей или других дефектов, а также в большинстве случаев от внешних энергетических воздействий (температуры, освещенности и т. п.).

К полупроводникам относится большая группа веществ с электронной электропроводностью, удельное сопротивление которых при нормальной температуре больше, чем у проводников, но меньше, чем у диэлектриков, и находится в диапазоне от 10-4 до 1010 Ом•см. В энергетике полупроводники напрямую мало используются, но электронные компоненты на основе полупроводников используются достаточно широко. Это любая электроника на станциях, подстанциях, диспетчерских управлениях, службах и т.п. Выпрямители, усилители, генераторы, преобразователи. Также из полупроводников на основе карбида кремния изготавливают нелинейные ограничители перенапряжений в линиях электропередачи (ОПН).

Диэлектрическими называют материалы, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводимость и чем слабее у него выражены замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением тепла.

Поляризацией диэлектрика называют возникновение в нем при внесении во внешнее электрическое поле макроскопического собственного электрического поля, обусловленного смещением заряженных частиц, входящих в состав молекул диэлектрика. Диэлектрик, в котором возникло такое поле, называется поляризованным .

Магнитными называют материалы, предназначенные для работы в магнитном поле при непосредственном взаимодействии с этим полем. Магнитные материалы делят на слабомагнитные и сильномагнитные. К слабомагнитным относят диамагнетики и парамагнетики. К сильномагнитным – ферромагнетики, которые, в свою очередь, могут быть магнитомягкими и магнитотвердыми.

Композиционные материалы – это материалы, состоящие из нескольких компонент, выполняющих разные функции, причем между компонентами существуют границы раздела.

Территория электротехнической информации WEBSOR

Классификация веществ по электрическим свойствам

Основы > Электротехнические материалы

Классификация веществ по электрическим свойствам (зонная теория твердого тела)

Все вещества в зависимости от их электрических свойств относятся к проводникам, полупроводникам и диэлектрикам . Различия между ними можно показать с помощью энергетических диаграмм, зонной теории твердых тел.
Различным атомам веществ характерны определенные энергетические состояния (уровни).
При переходе газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у данного типа атомов электронные уровни несколько смещаются вследствие действия соседних атомов друг на друга. Таким образом из отдельных энергетических уровней уединенных атомов в твердом теле образуется целая полоса – зона энергетических уровней. Часть этих уровней заполнена электронами в нормальном не возбужденном состоянии атома. На других уровнях электроны могут находиться только после того, как атом испытает внешнее энергетическое воздействие, при этом он возбуждается. Стремясь перейти к устойчивому состоянию атом излучает избыток энергии в момент возвращения электронов на уровни при которых энергия атома минимальна.

Энергетические диаграммы диэлектриков, полупроводников и проводников различны (см. рис. а, б, в).
Диэлектриками будут такие материалы у которых запрещенная зона настолько велика, что электронной проводимости не наблюдается.
1-зона заполнения электронами
2-запрещенная зона
3-свободная зона
Полупроводниками будут вещества с более узкой запрещенной зоной, которая может быть преодолена за счет внешних энергетических воздействий.
Проводниками будут материалы у которых заполненная электронами зона вплотную прилегает к зоне свободных энергетических уровней или даже перекрывает ее.
Вследствие этого электроны в металле свободны, то есть могут переходить с уровней заполненной зоны на незанятые уровни свободной зоны под влиянием слабой напряженности приложенного к проводнику электрического поля.

При отсутствии в полупроводнике свободных электронов ( при 0 град. Кельвина ) приложенная к нему разность электрических потенциалов не вызовет тока. Если из вне будет подведена энергия, достаточная для переброса электронов через запрещенную зону то, став свободными, электроны смогут перемещаться под действием электрического поля, создавая электронную электропроводность полупроводника. В заполненной зоне, откуда ушел электрон, образовалась ” электронная дырка “, а потому в полупроводнике начинается другое ” эстафетное ” движение электронов, заполняющих образовавшуюся дырку; причем под воздействием электрического поля дырка будет двигаться как эквивалентный положительный заряд. С повышением температуры число свободных электронов в полупроводнике возрастает. Энергию необходимую для перехода электронов в свободное состояние или для образования дырки может доставить не только тепловое движение но и другие источники энергии (свет, поток ядерных частиц, электрические и магнитные поля, механические воздействия и т.д.).
Электрические свойства определяются условиями взаимодействия атомов вещества и не являются непременной особенностью данного атома. Например углерод в виде алмаза является диэлектриком, а в виде графита обладает большой проводимостью. Дефекты и примеси в кристаллической решетке очень сильно влияют на электрические свойства твердых тел.

Классификация проводниковых материалов

Проводниками электрического тока могут быть твердые тела, жидкости, а при соответствующих условиях и газы. Важнейшими практическими применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы. Из металлических проводниковых материалов можно выделить: металлы высокой проводимости, имеющие удельное сопротивление при нормальной температуре не более 0,05 мкОм·м и сплавы высокого сопротивления – более 0,3 мкОм·м. Металлы высокой проводимости используются для проводов, обмоток электрических машин и т.д. Металлы и сплавы высокого сопротивления применяют для изготовления резисторов, электронагревательных приборов и т.д.
К жидким проводникам относятся расплавленные металлы и различные электролиты. Для большинства металлов температура плавления высока.

Механизм прохождения тока в металлах обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля. Поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода – электролитами являются растворы кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода.

Все газы и пары в том числе, и пары кристаллов при низких напряженностях электрического поля не являются проводниками. Если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной фотоионизации, то газ может стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительно заряженных ионов в единице объема представляет собой особую проводящую среду – плазма .

Читайте также:  Как самому сделать комнатную антенну для телевизора

Основные свойства проводников

Классическая электронная теория металлов представляет твердый проводник в виде системы состоящей из узлов кристаллической ионной решетки внутри которой находится электронный газ из свободных электронов. От каждого атома металла в свободное состояние переходит 1-2 электрона. При столкновении электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводника. Вследствие чего он нагревается. Электронная теория металлов дает возможность аналитически описать и объяснить основные законы электропроводности и потерь электрической энергии в металлах.

Опыты подтвердили гипотезу о электронном газе в металлах, а именно:
1)При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников не наблюдается проникновение атомов одного металла в другой.
2)При нагреве металлов до высоких температур скорость теплового движения свободных электронов увеличивается и наиболее быстрые из них могут вылетать из металла преодолевая силы поверхностного потенциального барьера.
3)В момент неожиданной остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появлению разности потенциалов на концах заторможенного проводника и стрелка подключенного к ним измерительного прибора отклоняется по шкале
4)Исследуя поведение металлических проводников в магнитном поле установили, что вследствие искривления траектории электронов в металлической пластине, помещенной в поперечное магнитное поле, появляется ЭДС и изменяется электрическое сопротивление проводника.

Представляя металл как систему, в которой положительные ионы скрепляются посредствам свободно движущихся электронов, легко понять природу всех основных свойств металлов: пластичность, ковкость, теплопроводность, электропроводность.
К важнейшим параметрам, характеризующим свойства проводниковых материалов относятся: удельная проводимость g или обратная ей величина – удельное сопротивление r , температурный коэффициент удельного сопротивления , коэффициент теплопроводности , контактная разность потенциалов и термоэлектродвижущая сила (термо ЭДС) e , предел прочности при растяжении и относительное удлинение перед разрывом .
Удельная проводимость металлических проводников согласно классической теории металлов может быть выражена:

где
е – заряд электрона;
n о – число свободных электронов в единице объема металла;
l – средняя длина свободного пробега электрона между двумя соударениями с узлами решетки;
m – масса электрона;
u т – средняя скорость теплового движения свободного электрона в металле.

Удельное электрическое сопротивление некоторых материалов

Медь
Золото
Латунь
Олово
Свинец
Серебро
Алюминий
Вольфрам
Железо
Никелин (сплав)

Графит
Уголь
Фарфор
Эбонит
Манганин (сплав)
Константан (сплав)
Ртуть
Нихром (сплав)
Фехраль (сплав)
Хромель (сплав)

Для разных металлов скорости хаотического теплового движения электронов (при определенной температуры) примерно одинаковы. Незначительно различаются также и концентрация свободных электронов n о . Поэтому значение удельной проводимости в основном зависит от средней длины пробега электронов в данном проводнике , которая в свою очередь определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями коэффициента удельного сопротивления.

Рассеивание движения электронов происходит в местах дефектов кристаллической решетки. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усилений колебаний узлов кристаллической решетки, с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, то есть уменьшается средняя длина свободного пробега электрона, уменьшается подвижность электронов и как следствие этого уменьшается удельная проводимость металлов и увеличивается их удельное сопротивление. Иными словами температурный коэффициент удельного сопротивления металлов положителен.

Коэффициент в учитывает увеличение числа свободных ионов в твердом теле при возрастании температуры. Для большинства ионных кристаллов коэффициент в близок к 100000 К.

Примеси и нарушения правильной структуры металлов увеличивают их удельное сопротивление. Значительное возрастание r наблюдается при сплавлении двух металлов в том случае если они образуют друг с другом твердый раствор. То есть при затвердевании совместно кристаллизуются и атомы одного металла входят в кристаллическую решетку другого. При некотором соотношении между компонентами в сплаве r имеет максимальное значение. Такое изменение r , от содержания компонентов сплава, можно объяснить тем, что вследствие более сложной структуры сплава по сравнению с чистыми металлами, его уже нельзя рассматривать как классический металл, то есть изменение удельной проводимости сплава зависит не только от изменения подвижности носителей заряда но и в некоторых случаях от частичного возрастания концентрации носителей заряда при повышении температуры. Сплав у которого уменьшение подвижности с ростом температуры компенсируется возрастанием концентрации носителей заряда будет иметь нулевой температурный коэффициент удельного сопротивления.
Теплопроводностью называется процесс передачи теплоты вследствие хаотического движения молекул или атомов. Количество теплоты переданной слоем вещества площади S при поддерживании на его плоскостях разности температур T 2 -T 1 за время t:


где
-толщина слоя вещества.

Коэффициентом теплопроводности называется величина, измеряемая количеством теплоты переданной в единицу времени через слой единичной толщины при разности температур поверхностного слоя в 1град С, если площадь поверхностного слоя равна 1 . За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют и электропроводность металла. Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость металла, тем больше должен быть и его коэффициент теплопроводности.
При соприкосновении двух различных металлических проводников между ними возникает контактная разность потенциалов. Причина появления этой разности заключается в различии значений работы выхода электронов из различных металлов, а так же в том, что концентрация электронов, а значит и давление электронного газа, в разных металлах и сплавах является неодинаковыми. Согласно электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна

где
U A и U B – потенциалы соприкасающихся металлов
n о – концентрация электронов в них

Если температуры спаев одинаковы, то сумма разности потенциалов в замкнутой цепи равна нулю. Если же один из спаев имеет температуру t 1 , а другой t 2 , то между спаями возникает термо-эдс.


где
c – коэффициент постоянный для данной пары проводников, характеризующий возникающую термо-эдс.

Провод составленный из двух изолированных друг от друга различных металлов или сплавов (термопар) применяют для измерения температур. В термопарах используются проводники, имеющие большой и стабильный коэффициент термо-эдс.
Для обмоток измерительных приборов и резисторов стремятся применять проводниковые материалы и сплавы с возможно меньшим коэффициентом термо-эдс, чтобы избежать ошибки в измерениях.

Классификация материалов по электрическим свойствам

М. В. Шкаруба

МАТЕРИАЛОВЕДЕНИЕ.

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

В. К. Федоров, проф. кафедры «Электротехника и электрификация
сельского хозяйства» ОмГАУ;

Ю. К. Машков, д-р техн. наук, проф. СибАДИ

Ш 66 Материаловедение. Технология конструкционных материалов: учеб. пособие / М. В. Шкаруба. – Омск: Изд-во ОмГТУ, 2010. − 116 c.

Учебное пособие включает описания лабораторных работ, выполняемых студентами по дисциплине «Материаловедение. Технология конструкционных материалов», и состоит из двух частей.

В первой части приведены описания лабораторных работ на стендах, которые можно выполнять только в лаборатории. Описания содержат подробные теоретические положения и фотографии стендов.

Во второй части приведены описания лабораторных работ на ЭВМ, которые студенты могут выполнять как в компьютерном классе кафедры, так и на домашних компьютерах.

Пособие предназначено для студентов дневной, очно-заочной и заочной форм обучения специальности 140211 – «Электроснабжение» и направления 140200 – «Электроэнергетика».

Читайте также:  Регулятор освещения для светодиодных ламп

Печатается по решению редакционно-издательского совета
Омского государственного технического университета

УДК 620.22

ББК 30.3

ISBN 978-5-8149-0991-6 © ГОУ ВПО «Омский государственный

технический университет», 2010

ВВЕДЕНИЕ

Дисциплина «Материаловедение. Технология конструкционных материалов» относится к числу общепрофессиональных дисциплин специальности «Электроснабжение» и направления «Электроэнергетика».

Приведем основополагающие термины этой дисциплины.

Материаловедение – наука, изучающая строение, свойства материалов, связь между строением и свойствами, а также влияние на них внешних воздействий (теплового, механического, химического и т. д.).

Технология– совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства [7].

Существует несколько классификаций материалов. По назначению материалы бывают:

В данной дисциплине для специальности «Электроснабжение» и направления «Электроэнергетика» рассматриваются только электротехнические и конструкционные материалы, которые широко применяются в электроэнергетике. Причем изучению электротехнических материалов отведено больше времени, чем изучению конструкционных.

Электротехнические материалы предназначены для изготовления изделий, применяемых для производства, передачи, преобразования и потребления электроэнергии, и характеризуются определенными свойствами по отношению к электромагнитному полю. Электротехнические материалы могут подвергаться воздействиям как отдельно электрических и магнитных полей, так и их совокупности. В данном курсе рассматривается только отдельное воздействие электрических и магнитных полей.

Классификация материалов по электрическим свойствам

Все материалы в зависимости от их электрических свойств можно разделить на диэлектрики, проводники и полупроводники. Различие между диэлектриками, проводниками и полупроводниками наиболее наглядно можно показать с помощью энергетических диаграмм зонной теории твердых тел [2]. В энергетической диаграмме твердого тела различают три зоны: заполненная электронами, запрещенная (такие энергии электроны данного материала иметь не могут) и зона проводимости (свободная зона) (рис. 1).

У диэлектрика запрещенная зона настолько велика ( 3,5 эВ), что свободные электроны практически не возникают и электроны в обычных условиях не наблюдается, так как энергию 3,5 эВ имеют лишь фотоны космических лучей и радиоактивного излучения.

Полупроводники имеют узкую запрещенную зону (3,5

Рис. 1. Энергетические диаграммы диэлектриков (а),
полупроводников (б), проводников (в)

Не нашли то, что искали? Воспользуйтесь поиском:

Классификация электротехнических материалов

ЛЕКЦИЯ 10

ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ. КЛАССИФИКАЦИЯ

Электротехническими материалами (например, контактными материалами) называют материалы, характеризуемые определенными свойствами по отношению к электрическим и магнитным полям и применяемые в технике с учетом и благодаря этим свойствам. В настоящее время число наименований электротехнических материалов, применяемых в радио-, микро-, и наноэлектронике составляет несколько тысяч. Причем все более актуальным является задача создания новых материалов с заданными свойствами (оптическими, полупроводниковыми, эмиссионными и т. д.)

Основными областями использования электротехнических материалов является электроэнергетика, электротехника, радиоэлектроника.

Электроэнергетика – это производство энергии и ее поставка потребителю. Это линии электропередач, трансформаторные станции, энергетическое хозяйство.

Электротехника – это все, что связано с превращением электрической энергии в другие виды энергии с одновременно осуществлением технологических процессов:

электротермических, – электросварочных,- электрофизических,- электрохимических и др.

Радиотехника – это системы управления энергетическими и электро-техническими объектами, передача информации, ее обработка, хранение и т. д.

Совершенствование электротехнологии повлекло за собой создание материалов, обладающих новыми свойствами: более высокой прочностью, термостойкостью, устойчивостью к агрессивному воздействию химических реакций, и имеющих высокие электроизоляционные свойства и низкую теплопроводность.

Классификация электротехнических материалов

Материалы, используемые в электронной технике, подразделяют на электротехнические, конструкционные и специального назначения.

По поведению в магнитном поле электротехнические материалы подразделяют на сильномагнитные (магнетики) и слабомагнитные. Первые нашли особенно широкое применение в технике благодаря их магнитным свойствам.

По поведению в электрическом поле материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.

Большинство электротехнических материалов можно отнести к слабомагнитным и практически немагнитным. Однако и среди магнетиков следует различать проводящие, полупроводящие и практически непроводящие, что определяет частотный диапазон их применения.

Проводниковыеназывают материалы, основным электрическим свойствам которых является сильно выраженная электропроводность. Их применение в технике обусловлено в основном этим свойством, определяющим высокую удельную электрическую проводимость при нормальной температуре.

Полупроводниковыми называют материалы, являющиеся по удель­ной проводимости промежуточными между проводниковыми и диэлект­рическими материалами и отличи­тельным свойством которых яв­ляется сильная зависимость удель­ной проводимости от концентрации и вида примесей или различных де­фектов, а также в большинстве слу­чаев от внешних энергетических воздействий (температуры, осве­щенности и т. п.).

Диэлектрическими называют материалы, основным электриче­ским свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводи­мость и чем слабее у него выраже­ны замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением теплоты.

При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определи­лась необходимость использования как пассивных, так и активных свойств этих материалов.

Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами являются диэлектрики, которые не допускают утечки электрических зарядов, т. е. с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материалы используется в качестве диэлектрика конденсатора определенной емкости и наимень­ших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, ма­териалы для излучателей и затворов в лазерной технике, электреты и др.

Условно к проводникам относят материалы с удельным электри­ческим сопротивлением ρ -5 Ом*м, а к диэлектрикам материа­лы, у которых ρ > 10 8 Ом*м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10 -8 Ом м, а лучших диэлектриков превосходить 10 16 Ом-м. Удельное сопротив­ление полупроводников в зависимости от строения и состава материа­лов, а также от условий их эксплуатации может изменяться в пределах
10 -5 —10 8 Ом м. Хорошими проводниками электрического тока яв­ляются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ сущест­вуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полу­проводники при низких температурах ведут себя подобно диэлектри­кам. В то же время диэлектрики при сильном нагревании могут прояв­лять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков – возбужденным.

Развитие радиотехники потребовало создания материалов, в кото­рых специфические высокочастотные свойства сочетаются с необходи­мыми физико-механическими параметрами. Такие материалы назы­вают высокочастотными.

Магнитные материалы

Дата добавления: 2017-03-12 ; просмотров: 3550 | Нарушение авторских прав

Читайте далее:
Ссылка на основную публикацию
×
×
Adblock
detector