Оптопара принцип работы - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Оптопара принцип работы

Оптроны. Виды и устройство. Работа и применение. Особенности

Оптроны (оптопары) — электронные приборы, служащие для преобразования сигнала электрического тока в световой поток. Их световой сигнал передается через каналы оптики, а также происходит обратная передача и преобразование света в электрический сигнал.

Устройство оптрона состоит из излучателя света и преобразователя светового луча (фотоприемника). В качестве излучателя в современных приборах используют светодиоды. В старых моделях применялись маленькие лампочки накаливания. Две составные части оптопары объединены общим корпусом и оптическим каналом.

Виды и устройство оптронов

Существует несколько признаков, по которым можно классифицировать оптопары по группам. При разделении на классы оптронных изделий необходимо учитывать два фактора: тип фотоприемника и особенности общей конструкции прибора.

Первый признак классификации оптронов обуславливается тем, что у всех оптопар на входе расположен светодиод, поэтому возможности функционирования определяются свойствами устройства фотоприемника. Вторым признаком является исполнение конструкции, определяющее особенности использования оптрона.

Применяя такой смешанный принцип разделения, можно выделить три группы оптронных устройств:
  • Элементарные оптопары.
  • Оптоэлектронные микросхемы.
  • Специальные оптопары.
Группы содержат в себе множество видов приборов. Для популярных оптопар применяются некоторые обозначения:
  • Д – диодная.
  • Т – транзисторная.
  • R – резисторная.
  • У – тиристорная.
  • Т 2 – со сложным фототранзистором.
  • ДТ – диодно-транзисторная.
  • 2Д (2Т) – диодная дифференциальная, либо транзисторная.
Система свойств оптронных устройств основывается на системе свойств оптопар. Эта система создается из четырех групп свойств и режимов:
  • Характеризует цепь входа оптопары.
  • Характеризует выходные параметры.
  • Объединяет степень действия излучателя на приемник света, и особенности прохода сигнала по оптопаре в качестве компонента связи.
  • Объединяет свойства гальванической развязки.

Основными оптронными параметрами считаются свойства передачи и гальванической развязки. Важной величиной транзисторных и диодных оптронов считается коэффициент передачи тока.

Показателями гальванической развязки оптронов являются:
  • Допустимое пиковое напряжение выхода и входа.
  • Допустимое наибольшее напряжение выхода и входа.
  • Сопротивление развязки.
  • Проходная емкость.
  • Допустимая наибольшая скорость изменения напряжения выхода и входа.

Первый параметр является наиболее важным. По нему определяют электрическую прочность оптрона, а также его способности применения в качестве гальванической развязки.

Эти параметры оптронов применимы и для интегральных микросхем на основе оптопар.

Обозначения оптопар на схемах
Диодные оптопары

Оптроны на диодах (рис. а) больше других устройств показывают уровень развития оптронной технологии. По значению коэффициента передачи определяют полезное действие преобразования энергии в оптопаре. Величины временных значений свойств дают возможность определить наибольшие скорости передачи информации. Соединение с диодным оптроном усилителей позволяет создать эффективные устройства передачи информации.

Транзисторные оптроны

Эти приборы (рис. с) отличаются некоторыми свойствами от других видов оптопар. Одним из таких свойств является возможность оптического управления по цепи светодиода, и по основной электрической цепи. Цепь выхода может также действовать в режиме ключа и линейном режиме.

Принцип внутреннего усиления дает возможность получения больших величин коэффициента передачи тока. Поэтому дополнительные усилители не всегда нужны. Важным моментом является небольшая инерционность оптопары, что допускается для многих режимов. Фототранзисторы имеют выходные токи намного больше, чем фотодиоды. Поэтому они применяются для коммутации различных электрических цепей. Все это достигается простой технологией транзисторных оптронов.

Тиристорные оптроны

Такие оптопары (рис. b) имеют большую перспективу для коммутации мощных силовых цепей высокого напряжения: по мощности, нагрузке, скорости они более подходящие, чем Т 2 оптопары. Оптроны марки АОУ 103 служат для применения в качестве бесконтактных выключателей в разных электронных схемах: усилителях, управляющих цепях, источниках импульсов и т.д.

Резисторные оптроны

Такие устройства (рис. d) называют фоторезисторами. Они значительно различаются от других типов оптронов своими особенностями конструкции и технологией изготовления. Основным принципом работы фоторезистора является эффект фотопроводности, то есть, изменения величины сопротивления при воздействии светового потока.

Дифференциальные

Рассмотренные выше оптопары способны передавать цифровые данные по гальванической развязке цепи. Важной проблемой является передача аналогового сигнала при помощи оптронов, то есть, создание линейности свойств передачи «вход-выход». Только при наличии таких свойств оптопар можно передавать аналоговые данные по гальванической развязке цепи без цифрового вида и импульсной передачи.

Такая задача решается диодными оптопарами, имеющими качественные шумовые и частотные характеристики. Трудность в решении этой задачи заключается в узком интервале линейности передающей характеристики и линейности диодных оптопар. Такие приборы только начинают прогрессировать в развитии, но за ними большое будущее.

Оптронные микросхемы

Эти микросхемы являются наиболее популярными классами моделей оптронных устройств, благодаря конструктивной и электрической совместимости оптронных микросхем с простыми видами, а также намного большей функциональности. Широкое применение получили коммутационные оптронные микросхемы.

Специальные оптроны

Такие образцы имеют значительные отличия от стандартных моделей приборов. Они выполнены в виде оптопар с оптическим каналом открытого вида. В устройстве таких моделей между фотоприемником и излучателем находится воздушный промежуток. Поэтому, при размещении в нем механических препятствий можно управлять светом и сигналом выхода. Оптроны с открытым каналом оптики используются вместо оптических датчиков, которые фиксируют наличие предметов, их поверхность, поворот, перемещение и т.д.

Применение оптронных устройств
  • Подобные устройства используются для передачи данных между устройствами, которые не соединены электрическими проводами.
  • Также оптопары используются для отображения и получения информации в технике. Отдельно необходимо отметить оптронные датчики, служащие для контроля объектов и процессов, отличающихся по назначению и природе.
  • Заметен прогресс оптронной функциональной микросхемотехники, которая ориентирована на решение различных задач по преобразованию и накоплению данных.
  • Полезной эффективностью стала замена больших недолговечных устройств электромеханического типа приборами оптоэлектронного принципа действия.
  • Иногда оптронные компоненты применяются в энергетике, хотя это довольно специфические решения.
Контроль электрических процессов

Мощность светового потока от светодиода и величина фототока, который образуется в линейных цепях фотоприемников, напрямую зависит от тока проводимости излучателя. Поэтому по бесконтактным оптическим каналам можно передать информацию о процессах в цепях электрического тока, связанных проводами с излучателем. Наиболее эффективным стало применение излучателей света оптопар в датчиках, электрических изменений в силовых цепях высокого напряжения. Точная информация об аналогичных изменениях имеет важность для своевременной защиты источников и потребителей электроэнергии от чрезмерных нагрузок.

Стабилизатор с контрольным оптроном

Оптроны эффективно работают в стабилизаторах высокого напряжения. В них они образуют оптические каналы обратных связей отрицательной величины. Стабилизатор, изображенный на схеме, является прибором последовательного вида. При этом элемент регулировки выполнен на биполярном транзисторе, а стабилитрон на основе кремния работает в качестве источника эталонного опорного напряжения. Компонентом сравнения является светодиод.

При возрастании выходного напряжения, повышается и проводимость светодиода. На транзистор оптрона оказывает действие фототранзистор, при этом стабилизирует напряжение на выходе.

Читайте также:  Кухонные светильники для освещения столешницы
Достоинства оптронов
  • Бесконтактное управление объектами, гибкость и разнообразие видов управления.
  • Устойчивость каналов связи к электромагнитным полям, что позволяет создать защиту от помех и взаимных наводок.
  • Создание микроэлектронных устройств с приемниками света, свойства которых могут изменяться по определенным сложным законам.
  • Увеличение перечня функций управления сигналом выхода оптронов с помощью воздействия на материал канала оптики, создание приборов и датчиков для передачи данных.
Недостатки оптронов
  • Малый КПД, вследствие двойного преобразования энергии, большой расход электроэнергии.
  • Значительная зависимость работы от температуры.
  • Большой собственный шумовой уровень.
  • Технология и конструкция недостаточно совершенны, так как применяется гибридная технология.

Такие отрицательные моменты оптронов постепенно устраняются по мере развития технологии схемотехники и создания материалов. Большая популярность оптронов вызвана, прежде всего, уникальными свойствами этих устройств.

Оптопары – характеристики, устройство, применение

Что такое оптопара

Оптрон — оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса. Принцип действия оптрона базируется на том, что подаваемый на него электрический сигнал вызывает свечение на передающей стороне, и уже в форме света сигнал принимается фотоприемником, инициируя электрический сигнал на приемной стороне. То есть сигнал передается и принимается посредством оптической связи внутри электронного компонента.

Оптопара – наиболее простая разновидность оптрона. Она состоит только из излучающей и принимающей частей. Более сложная разновидность оптрона — оптоэлектронная микросхема, внутри которой содержится несколько оптопар, сопряженных с одним либо несколькими согласующими или усилительными устройствами.

Таким образом, оптопара представляет собой электронный компонент, обеспечивающий оптическую передачу сигнала в цепи без гальванической связи между источником сигнала и его приемником, поскольку фотоны, как известно, электрически нейтральны.

Структура и характеристики оптопар

В оптопарах применяются фотоприемники, чувствительные в ближней инфракрасной и видимой областях, поскольку именно для данной части спектра характерны источники интенсивного излучения, могущие работать в качестве фотоприемников без охлаждения. Фотоприемники с р-n-переходами (диоды и транзисторы) на основе кремния универсальны, область их максимальной спектральной чувствительности находится вблизи 0,8 мкм.

Оптопара характеризуется в первую очередь коэффициентом передачи по току CTR, то есть отношением токов входного и выходного сигналов. Следующий параметр — скорость передачи сигнала, по сути – граничная частота fc работы оптопары, связанная с временами фронта tr и среза tf для передаваемых импульсов. Наконец, параметры, характеризующие оптопару с точки зрения гальванической развязки: сопротивление развязки Riso, максимальное напряжение Viso и проходная емкость Cf.

Входное устройство, входящее в структуру оптрона, предназначено для создания оптимальных условий работы излучателя (светодиода), для смещения рабочей точки в линейную зону ВАХ.

Входное устройство обладает достаточным быстродействием и широким диапазоном входных токов, обеспечивая надежность передачи информации даже при малом (пороговом) токе. Оптическая среда находится внутри корпуса, через нее передается свет от излучателя к фотоприемнику.

В оптронах с управляемым оптическим каналом имеется дополнительное устройство управления, через которое можно с помощью электрических или магнитных средств влиять на свойства оптической среды. На стороне фотоприемника сигнал восстанавливается, с высоким быстродействием преобразуясь из оптического в электрический.

Выходное устройство на стороне фотоприемника (например включенный в схему фототранзистор) призван преобразовать сигнал в стандартную электрическую форму, удобную для дальнейшей обработки в следующих за оптроном блоках. Оптопара зачастую не содержит входных и выходных устройств, поэтому ей требуются внешние цепи для создания нормального режима работы в схеме того или иного прибора.

Оптопары находят широкое применение в цепях гальванической развязки блоков различной аппаратуры, где есть низковольтные и высоковольтные цепи, цепи управления развязываются от силовых цепей: управление мощными симисторами и тиристорами, схемами реле и т. д.

В радиотехнических схемах модуляции и автоматической регулировки усиления используются диодные, транзисторные и резисторные оптроны. Через воздействие по оптическому каналу схема бесконтактно регулируется и выводится на оптимальный рабочий режим.

Оптопары настолько универсальны, что даже просто в качестве элементов гальванической развязки и бесконтактного управления применяются в настолько разнообразных отраслях и в таком количестве уникальных функций, что все и не перечислить.

Вот лишь некоторые из них: вычислительная техника, техника связи, автоматика, радиоаппаратура, системы автоматизированного управления, измерительные приборы, системы контроля и регулирования, медицинская техника, устройства визуального отображения информации и многое многое другое.

Применение оптопар на печатных платах позволяет добиться идеальной гальванической развязки, когда требования к изоляции высоковольтных и низковольтных, входных и выходных цепей по сопротивлению чрезвычайно высоки. Напряжение между цепями передатчика и приемника популярной оптопары PC817 составляет, например, 5000 В. Кроме того с помощью оптической развязки достигается чрезвычайно малая проходная емкость, порядка 1 пф.

При помощи оптопар очень просто реализуется бесконтактное управление, при этом сохраняется простор для уникальных конструкторских решений касательно непосредственно управляющих цепей. Немаловажно здесь и то, что совершенно отсутствует реакция приемника на источник, то есть информация передается однонаправленно.

Широчайшая полоса пропускания оптопары исключает ограничения накладываемые низкими частотами: при помощи света можно передавать хоть постоянный сигнал, хоть импульсный, причем с очень крутыми фронтами, что принципиально невозможно осуществить при помощи импульсных трансформаторов. Канал связи внутри оптопары абсолютно невосприимчив к воздействию электромагнитных полей, поэтому сигнал защищен от помех и наводок. Наконец, оптопары полностью совместимы с прочими электронными компонентами.

Оптопара принцип работы, оптроны принцип работы

Что такое оптопара – электронно-оптический аппарат (прибор), в котором присутствуют источник светового излучения и приемник того же излучения – фотоприемник, которые в свою очередь связаны конструктивно электрическими и оптическими связями.

В практическом применении наибольшего распространения нашли оптроны (в последнее время приобрели название оптопары), в которых нет электрических связей между приемником и излучателем, а есть только оптическая связь. По сложности составляющих структурных схем в оптронных изделиях различают 2 группы приборов:

  • Оптопара – полупроводниковый оптическо-электронный прибор, в котором оптическая связь обеспечивает изоляцию входа и выхода излучающего и принимающего элементов.
  • Электронно-оптическая микросхема, которая состоит из определенного количества оптопар и так называемых усилителей, которые имеют электрическое соединение с элементами оптронов.


Рисунок 1 – Общий вид оптопары в герметичном корпусе

Принцип работы оптопары

Основное предназначение оптопары заключается в развязке сигнальных цепей гальваническим методом.

Принцип действия оптопары для всех видов фотоприемников и излучательных элементов практически одинаковый и состоит в следующем: формируемый электрический сигнал на входе в излучатель, трансформируется в поток света, который далее принимается фотоэлементом и меняет проводимость последнего – меняя его сопротивление.

Читайте также:  Моргание светодиодных ламп при выключенном выключателе

Другими словами принцип действия оптрона заключается в двойном трансформировании энергии.

Как работают оптронные устройства

Рассмотрим работу двух видов оптронных устройств: оптическо-электронное и оптическое.

Работа оптическо-электронного аппарата основывается на превращении энергии света в электрическую. Переход энергии происходит при помощи твердого тела и процессов электрических фотоэффектов и сияния («горения», «свечения») при воздействии электрического поля.

Эффект фотоэлектричества означает, что твердое тело может излучать электроны под действием фотонов.

Функционирование оптического устройства происходит при тесном взаимодействии электромагнитного испускания и твердого тела.

Схемы работы оптопар

Применение оптопар (оптронов) позволяет решать множество задач, в частности контроль значений параметров от различных датчиков – уровень, влажность, концентрация и т.д); использование в устройствах автоматики и релейных защит электрооборудования; в диагностических аппаратах. В тех или иных случаях схемы включения оптопар отличны друг от друга.

В качестве примера приведем несколько линейных схем:


Рисунок 2 – Линейная развязка аналогового сигнала с помощью оптронов: 01- оптопары; У1, У2 – усилители

Передача аналоговых сигналов осуществляется по развязанной гальванически цепи с использованием двух одинаковых оптронов, один из которых предназначен осуществляет обратную связь.


Рисунок 3 – Развязка между блоков U1- оптопара; VT1 – транзистор; R2 – сопротивление

Часто применяется в радиотехнике. Выходной сигнал Блока 1 подается на Блок 2 посредством оптопары-диода. В случае использования в Блоке 2 микросхемы с небольшим током на входе, то усилитель не требуется и оптопара-диод работает в фотогенерирующем режиме.


Рисунок 4 – Реле оптоэлектронное

Сигналы от фотоприемника оптопары удобно и практично использовать на воздействие исполнительных механизмов опять же через гальваническую развязку (к примеру: включение света, электродвигателе и другого оборудования).

На рисунке 4 изображена схема полупроводникового разомкнутого реле. Коммутация тока происходит в реле. Транзистор оптопары принимает фотосигнал и открывает VT1, VT2 транзисторы, далее включается нагрузка.

Устройство оптронов

В качестве излучателя используется светодиод, который размещается сверху в металлическом корпусе. В нижней части расположен фотоприемник (кремниевый кристалл). Свободное пространство заполняется затвердевающей массой, которая полностью прозрачна. Последняя покрыта отражателем для направления лучей, чтобы не рассеивались лучи за пределы зоны приемника.

Как правило, вывода оптронов заливаются жидким стеклом. Верхняя и нижняя часть крышки корпуса соединяются при помощи сварки.

Оптрон-резистор практически не отличается от вышеописанной конструкции. В нем используется в качестве излучателя лампа накала, а приемник выполнен из кадмия селенистого.

Применение оптопар

На сегодняшнее время оптопары очень хорошо изучены и широко распространены в различных сферах деятельности. Особое место применения оптронов в схемах для логического согласования различных блоков, которые содержат элементы с исполнительными органами.

Как уже было сказано, ранее оптроны применяются для гальванической развязки в цепях с отличными блоками, преобразования и модуляции импульсов для управления аппаратами, контроля и управления, сигнализации и защиты электрического оборудования и процессов (счетчики, коммутаторы, реле, электрические измерительные устройства).

Достоинства и недостатки оптопар

К основным достоинствам оптронов относится следующее:

  • управление различного рода объектами осуществляется бесконтактно;
  • разнообразие и гибкость управления;
  • абсолютная невосприимчивость и независимость от посторонних электромагнитных волн, что не создает дополнительных помех в работе;
  • возможность использования, как импульса, так и постоянного сигнала;
  • возможность изменения выходного сигнала за счет воздействия на вещество оптоканала (из этого следует возможность использования датчиков различных типов);
  • конструктивная и физическая совместимость с иными электронными и полупроводниковыми аппаратами и приборами;
  • с точки зрения пропускания оптопары, то в низких частотах нет ограничений.

К недостаткам оптронов относятся:

  • достаточно на высоком уровне потребляемая мощность, вызванная двойной трансформацией энергии (электрический ток – световой поток – электрический ток;
  • сравнительно невысокий КПД переходных процессов;
  • снижение качества параметров в процессе длительного времени;
  • высокий уровень шумовых характеристик;
  • достаточно сложно реализовать обратную связь из-за разностью выходных и входных схем.

Оптопара принцип работы

В оптроне входная и выходная цепи гальванически развязаны между собой; взаимодействие цепей ограничено паразитными ёмкостями между выводами оптрона. Тепловым воздействием излучателя на фотоприёмник на практике можно пренебречь.

Электрическая прочность (допустимое напряжение между входной и выходной цепями) зависит от конструктивного оформления прибора; для распространённых отечественных DIP-корпусов предельное напряжение между цепями нормируется на 500 или 1000 В, при этом сопротивление изоляции нормируется на уровне 10 11 Ом. Реальное напряжение электрического пробоя такого прибора — порядка нескольких киловольт.

Нижняя рабочая частота оптрона не ограничена — оптроны могут работать в цепях постоянного тока. Верхняя рабочая частота оптронов, оптимизированных под высокочастотную передачу цифровых сигналов, достигает сотен МГц. Верхние рабочие частоты линейных оптронов существенно ниже (единицы—сотни кГц). Наиболее медленные оптроны, использующие лампы накаливания, фактически являются эффективными фильтрами низких частот с граничной полосой порядка единиц Гц.

Классификация

По степени интеграции

  • оптопары (или элементарные оптроны) — состоящие из двух и более элементов (в т. ч. собранные в одном корпусе)
  • оптоэлектронные интегральные схемы, содержащие одну или несколько оптопар (с дополнительными компонентами, например, усилителями, или без них).

По типу оптического канала

  • с открытым оптическим каналом
  • с закрытым оптическим каналом

По типу фотоприёмника

В настоящее время в оптоэлектронике можно выделить два направления.

  1. Электронно-оптическое, основанное на принципе фотоэлектрического преобразования, реализуемого в твердом теле внутренным фотоэффектом и электролюминесценцией.
  2. Оптическое, основанное на тонких эффектах взаимодействия твердого тела с электромагнитным излучением и использующее лазерную технику, голографию, фотохимию и т.д.

Существуют два класса оптических элементов, которые можно использовать при создании оптических ЭВМ:

  • Оптроны
  • Квантооптические элементы.

Они являются представителями соответственно электронно-оптического и оптического направлений.

Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.

Использование

Оптроны имеют несколько областей применения, использующих их различные свойства:

Механическое воздействие

Оптроны с открытым оптическим каналом, доступным для механического воздействия (перекрытия) используются как датчики во всевозможных детекторах наличия (например, детектор бумаги в принтере), датчиках конца (или начала), счётчиках и дискретных спидометрах на их базе (например, координатные счётчики в механической мыши, ареометры).

Гальваническая развязка

Оптроны используются для гальванической развязки цепей — передачи сигнала без передачи напряжения, для бесконтактного управления и защиты. Некоторые стандартные электрические интерфейсы, например,

Читайте также:  Отопление частного дома без газа и электричества

Неэлектрическая передача

На принципе оптрона построены такие приспособления как:

  • беспроводные пульты и оптические устройства ввода
  • беспроводные (атмосферно-оптические) и волоконно-оптические устройства передачи аналоговых и цифровых сигналов

Также используются в неразрушающем контроле как датчики аварийных ситуаций. GaP-диоды начинают излучать свет при воздействии на него радиации, а фотоприёмник фиксирует падение его свечения и сообщает о тревоге.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое “Оптопара” в других словарях:

оптопара — оптрон Словарь русских синонимов. оптопара сущ., кол во синонимов: 1 • оптрон (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

оптопара — Оптоэлектронный полупроводниковый прибор, состоящий из излучателя и приемника излучения, между которыми имеется оптическая связь и обеспечена электрическая изоляция. [ГОСТ 15133 77] Тематики полупроводниковые приборы EN optocouplerphotocoupler DE … Справочник технического переводчика

оптопара — оптическая пара … Словарь сокращений и аббревиатур

оптопара — optronas statusas T sritis automatika atitikmenys: angl. optoelectronic coupler; optron; photocoupler vok. Optokoppler, m; Optron, m rus. оптопара, f; оптрон, m pranc. coupleur optoélectronique, m; optocoupleur, m; optron, m … Automatikos terminų žodynas

оптопара — и, ж. Те саме, що оптрон … Український тлумачний словник

Резисторная оптопара — … Википедия

диодная оптопара — Оптопара с приемником излучения, выполненным на основе фотодиода. [ГОСТ 15133 77] Тематики полупроводниковые приборы … Справочник технического переводчика

дифференциальная диодная оптопара — Диодная оптопара, в которой два близких по определяющим параметрам фотодиода принимают световой поток от одного излучателя. [ГОСТ 15133 77] Тематики полупроводниковые приборы … Справочник технического переводчика

резисторная оптопара — Оптопара с приемником излучения, выполненным на основе фоторезистора. [ГОСТ 15133 77] Тематики полупроводниковые приборы … Справочник технического переводчика

тиристорная оптопара — Оптопара с приемником излучения, выполненным на основе фототиристора. [ГОСТ 15133 77] Тематики полупроводниковые приборы … Справочник технического переводчика

Оптроны – современные приборы управления

Оптронами называют оптоэлектронные приборы, в которых имеются светоизлучатель и фотоприемник с тем или иным видом связи, конструктивно связанные друг с другом.

Принцип действия оптронов основан на преобразовании электрического сигнала в свет. В фотоприемнике свет вызывает электрический отклик. В электронной цепи такой прибор выполняет функцию элемента связи, в котором осуществлена электрическая (гальваническая) развязка входа и выхода.

Распространение получили оптроны, у которых имеется прямая оптическая связь от излучателя к фотоприемнику и исключены все виды электрической связи между ними. Вход и выход разделяет изолятор с напряжение электрического пробоя достигающего у некоторых оптронов несколько киловольт.

Оптроны делят на две группы по степени сложности. Оптопара (говорят также “элементарный оптрон”) представляет собой оптоэлектронный полупроводниковый прибор, состоящий из излучающего и фотоприемного элементов. Оптопары с полевым транзистором или фотосимистором называют оптореле или твердотельным реле. Оптопары, как правило, используются для передачи информации, а оптореле используется для коммутации сигнальных или силовых цепей. Приборы второй группы представляют собой оптоэлектронные микросхемы, состоящие из одной или нескольких оптопар и электрически соединенных с ними одного или нескольких согласующих или усилительных устройств.

В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов, для защиты входных цепей измерительных устройств от помех и наводок и т.д. Другая важнейшая область применения оптронов – оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, триаков, симисторов, управление электромеханическими релейными устройствами. Для улучшения работы автоматики, промышленной и бытовой электроники, автоматизированных систем управления, измерительной техники, выполняется замена реле, кнопочных и клавишных переключателей более компактными, долговечными, быстродействующими аналогами. Ведущая роль в этом направлении отводится оптоэлектронным приборам. Весьма важные технические достоинства электромагнитных реле (уверенное функционирование в мощных, высоковольтных, сильноточных системах) свойственны и оптронам. Вместе с тем оптоэлектронные изделия существенно превосходят электромагнитные аналоги по надежности, долговечности, переходным и частотным характеристикам. Управление компактными и быстродействующими оптоэлектронными переключателями, реле уверенно осуществляется с помощью интегральных микросхем цифровой техники без специальных средств электрического согласования.

Для примера рассмотрим 5П19Б3 — нормально разомкнутый оптрон с выходным каскадом на мощных полевых транзисторах, имеющий очень малое сопротивление во включенном состоянии. Этот оптрон обеспечивает громадные преимущества по сравнению с традиционным электромеханическим реле. Внутри него нет механических, электромагнитных или подвижных частей, отсутствует дребезг контактов, имеет бесшумное замыкание, отсутствует чувствительность к ударам, вибрации и положению монтажа, неограниченное число замыканий контактов, длительный срок службы и чрезвычайно высокая надежность, малый входной ток включения. Оптрон состоит из двух выходных МОП-транзисторов и матрицы оптических детекторов, управляющей затворами мощных выходных транзисторов. Входом оптрона является светодиод с высоким КПД. Оптическая полость заполнена прозрачным материалом с высокой диэлектрической прочностью, который обеспечивает оптическую развязку между входным и выходным каскадами оптрона. Особенно полезны данные оптроны в сравнении с электромагнитными реле при эксплуатации в жестких условиях (например, в авиационной, космической и спутниковой аппаратуре).

Одним из примеров использования оптронов является приведённая здесь схема управления нагрузкой.

Параметры схемы:
Входное напряжение включения 5 В
Входной ток 40 мА
Вид коммутируемого тока переменный или постоянный
Максимальное выходное сопротивление 1,25 Ом
Минимальный коммутируемый ток 0,5 мА
Максимальный коммутируемый ток 2,5 А
Максимальное коммутируемое напряжение ±350 В
Максимальная рассеиваемая мощность 10 Вт
Температура окружающей среды -45…+75 ° С

Резистор С2-23-0,5-620 Ом ±5%

На рисунке приведена односторонняя печатная плата для сборки схемы. Конструкция корпуса оптореле упрощает параллельное включение. Эту схему можно использовать для замены реле и контакторов, соблюдая режим работы. Оптореле 5П19Б3 имеют “мягкий старт”, что даёт возможность использовать их для управления лампами, электродвигателями, контакторами и другими нагрузками. Большой запас по току и напряжению позволяет использовать схему в различных экспериментах начинающим. Для замыкания цепи “Нагрузка” необходимо подать управляющий сигнал с указанными выше параметрами. Применение в выходных цепях оптореле МОП-транзисторов даёт возможность объединять их используя параллельное включение. При необходимости использовать схему совместно с микроконтроллером (в дальнейшем МК) или цифровыми микросхемами возникает проблема перегрузки выхода управляющего устройства. Ток 40 мА является недопустимым для многих типов МК и предельным для других типов МК. Для решения этой задачи можно использовать ещё один оптрон, коммутирующий меньшую мощность, по сравнению с 5П19Б3 и требующий меньший ток включения.

Вторая схема обладает теми же выходными параметрами, а уменьшенный входной ток управления позволяет использовать эту схему совместно с МК или другими маломощными источниками сигналов.

Входное напряжение включения 5 В
Входной ток 10 мА

Ссылка на основную публикацию
Adblock
detector
R1, R2