Открытый коллектор принцип работы - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Открытый коллектор принцип работы

Выход с открытым коллектором

Элементы с открытым коллектором имеют выходную цепь, заканчивающуюся одиночным транзистором, коллектор которого не соединен с какими-либо цепями внутри микросхемы (Рис. 2.18,а). Транзистор управляется от предыдущей части схемы элемента так, что может находиться в насыщенном или запертом состоянии. Насыщенное состояние транзистора трактуется как отображение логического нуля, запертое, как логической единицы.

Поэтому для формирования высокого уровня напряжения на выходе элементов с открытым коллектором (типа ОК) требуется подключение внешних резисторов величиной порядка сотен Ом (или другие нагрузки), соединенные с источником питания.

Выход с открытым коллектором ОК можно считать состоящим из одного выключателя, замкнутому состоянию которого соответствует сигнал логического нуля, а разомкнутому – отключенное, пассивное состояние (Рис.2.18.б.).

Несколько выходов типа ОК можно соединять параллельно, подключая их к общей для всех выходов цепочке Ucc – R (Рис.2.18.в). При этом можно получит режим поочередной работы на общую линию, как и для элементов с тремя состояниями, если активным будет лишь один элемент, а выводы всех остальных окажутся запертыми. Если же разрешить активную работу элементов, выходы которых соединены, то можно получить дополнительную логическую операцию, называемую операцией монтажной логики.

При реализации монтажной логики высокое напряжение на общем выходе возникает только при запирании всех транзисторов, т.к. насыщение хоты бы одного из них снижает выходное напряжение до уровня U = Uкэн. То есть для получения логической единицы на выходе требуется единичное состояние всех выходов: выполняется монтажная операция И. Поскольку каждый элемент выполняет операцию Шеффера над своими входными переменными, общий результат окажется следующим:

F = X1X2 X3X4 … Xm-1 Xm = X1X2+X3X4+ …+Xm-1 Xm

а)б)в)
Рис.2.18. Выход с открытым коллектором

При использовании элементов с ОК в магистрально-модульных структурах требуется разрешать или запрещать работу того или иного элемента. Для элементов типа ОК кВ качестве входа ОЕ может быть использован один из обычных входов элемента. Если речь идет об элемента И-НЕ, то, подавая ) на любой из входов, можно запретить работу элемента, поставив его выход в разомкнутое состояние независимо от состояния других входов. Уровень 1 на этом входе разрешит работу элемента.

Положительной чертой элементов с ОК при работе в магистально-модульных системах является их защищенность от повреждений из-за ошибок управления, приводящих к одновременной выдаче на шину нескольких слов, а также возможность реализации дополнительных операций монтажной логики.

Недостатком таких элементов является большая задержка переключения из 0 в 1. При этом переключении происходит заряд выходной емкости сравнительно малым током резистора R. Сопротивление резистора нельзя сделать слишком малым, т.к. это привлекло бы к большим токам выходной цепи в статике при насыщенном состоянии выходного транзистора. Поэтому положительный фронт выходного напряжения формируется относительно медленно с постоянной времени RC.

До порогового напряжения (до середины полного перепада напряжения) экспоненциально изменяющийся сигал изменится за время 0,7RC, что и составляет задержку tз 01 .

При работе с элементами типа ОК проектировщик должен задать сопротивление резистора R, которое не является стандартным, а определяется для конкретных условий. Анализ статических режимов задает ограничения величины сопротивленияR снизу и сверху. Значение сопротивления резистора R выбирается в этом диапазоне с учетом быстродействия схемы и потребляемой ею мощности.

Ограничение снизу величины сопротивления резистора R связано с тем, что ее уменьшение может вызвать перегрузку насыщенного транзистора по току. На Рис.2.19.а показан режим, в котором нулевое состояние выхода схемы обеспечивается элементом 1 с ОК. Из этого рисунка видно, что через элемент 1 протекает суммарный ток, складывающийся из токов резистора, входных токов логических элементов (ЛЭ1…ЛЭn) и токов заперых транзисторов элементов с ОК 2 …m, т.е.

· Iвх.0 – входные токи элементов приемников сигнала при низком уровне выходных напряжений;

· IZ токи запертых выходов ОК (обычно пренебрежимо малые);

Чтобы ток выхода элемента 1 не превысил допустимого значения следует соблюдать условие

Ограничение сверху величины сопротивления резистора R связано с необходимостью гарантировать достаточно низкий уровень напряжения U1 формируемого в схеме при запертом состоянии всех выходов элементов с ОК.

Из схемы Рис.2.19.б видно, что U1 = Ucc – IRR.

Из полученных выражений следует R

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10713 – | 8044 – или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Биполярные транзисторы

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

Читайте также:  Расстояние между опорами освещения в городе

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc – 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:

где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор “настроен” на работу в качестве переключателя, что также называется “режим насыщения и отсечки “, где “насыщение” – когда транзистор полностью открыт и проводит ток, а “отсечение” – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Электроника для всех

Блог о электронике

Основы на пальцах. Часть 4

Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.

Миром правит цифра!

Краеугольным камнем цифровой схемотехники служит понятие нуля и единицы , понятие это совершенно условное , т.к. фактически нет никакого нуля и нет никакой единицы, есть лишь уровни напряжения – высокий и низкий, а также некий порог после которого данный уровень напряжения принято считать высоким или низким. Скажем все, что ниже 0.7 вольт считаем за низкий уровень, т.е. 0, все что выше 2.4 вольт высоким, т.е. единица. Между 0.7 и 2.4 вольта, когда не ясно какой уровень, это состояние совершенно неопределенное его нельзя оценивать как входную величину, иначе на выходе системы в таком случае будет непредсказуемый результат.
Сопротивление входов очень высокое, практически можно считать его бесконечным.

Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =)
Читайте также:  Окна на юго запад плюсы и минусы

Выход в микросхеме бывает разных типов. Различают push-pull и open drain (в нашей литературе его называют Открытым Коллектором или ОК ). Отличие заключается в способе выдачи сигнала на выход. В Push-Pull выходе когда нужен низкий уровень, то выход тупо и беспрекословно замыкается на землю, имеющую нулевой потенциал, а когда высокий, то на напряжение питания.
В открытом коллекторе все несколько иначе. Когда нам надо получить низкий уровень, то мы сажаем ногу на землю, а вот высокий уровень получается подтягивающим резистором ( pullup ), который, в отсутствии посадки на землю и большого сопротивления висящей на выходе нагрузке, заводит на ногу высокий потенциал. Тут можешь вспомнить закон Ома и посчитать какое будет напряжение выхода на открытом коллекторе если подтягивающий резистор обычно порядка 1КилоОм, а сопротивление входа больше 1МегаОм. Тип выхода определяется из документации на микросхему, некоторые микрухи имеют программируемый выход, например, все контроллеры AVR. Исходя из этого становится понятен смысл регистров Port и DDR в контроллере AVR – они определяют тип выхода Open Drain + PullUp , Push-Pull или просто Open Drain .

О микросхемах дискретной логики И, ИЛИ, НЕ я рассказывать не буду, каждую описать, так это справочник не на одну сотню страниц будет. Да и постепенно они уходят в прошлое, вытесняемые контроллерами и программируемыми матрицами. Скажу лишь главное – работают они по жесткой таблице истинности, которую можно найти в соответствующем datasheet.

Аналог рулит!
Цифра может и правит миром, но я вот последнее время люблю аналоговую технику. Ряд задач автоматики и регулирования на аналоговых цепях сделать в разы проще, чем на микроконтроллере или цифровой логике. Основное отличие от цифровых микрух в том, что тут нет четких состояний , а вход и выход могут изменяться плавно от минус питания до плюс питания. Основой аналоговой схемотехники является операционный усилитель .
Адская вещь, скажу тебе. Содержит выход и два входа. Один вход прямой, другой инверсный. Внутри напряжения по этим двум входам математически складываются (с учетом знака входа), а результат умножается на коэффициент усиления и выдается на выход. Коэффициент усиления этого девайса в идеальном случае достигает бесконечности, а в реальном близок к сотням тысяч. В чем это выражается? А в том, что подаешь ты на вход скажем 1 милливольт, а выход сразу же зашкаливает под максимум – выдавая сразу напряжение питания. Как же тогда работать, если его зашкаливает от малейшего сигнала? А просто. Ну во первых зависит от задачи. Например если нам нужно сравнивать два сигнала, то один мы подаем на отрицательный вход, а другой на положительный. В данном случае выход нам покажет либо минимум напряжения, либо максимум, в зависимости от того больше сигнал на отрицательном входе или на положительном. Такой режим работы операционного усилителя называется компаратором. Я его применил недавно, чтобы отследить просадку напряжения питания на устройстве. Смотри на схему, видишь на минус у меня идет опорное напряжение со стабилитрона. Оно всегда равно 3.3 вольта – за этим следит стабилитрон. А вот на второй вход идет напряжение с делителя – оно зависит от общего напряжения питания. В нормальном режиме, когда на входе 12 вольт, то с делителя идет порядка 4 вольт, это выше чем 3.3 опорного и с компаратора выходит +5 вольт (максимум питающего). При просадке напруги ниже определенного порога с делителя начинает выходить уже менее 3.3 вольт и компаратор резко перекидывается в противоположное положение – 0 вольт (минимум питающего). Этот переход отслеживает микроконтроллер и дает сигнал тревоги.

Испльзование операционных усилителей

Если от операционного усилителя надо получить усиление, то нужно как то обуздать его бешеный коэффициент. Для этого ему добавляют отрицательную обратную связь. Т.е. берут и с выхода подают сигнал на отрицательный вход, подмешивая его к основному входному сигналу. В итоге, выходной сигнал вычитается из входного. А коэффициент усиления становится равным отношению резисторов на входе и выходе (смотри схему).

Но это далеко не все фишки которые умеет делать операционный усилитель. Если в обратную связь сунуть конденсатор, то получим интегратор, выдающий на выходе интеграл от функции входного сигнала. А если скомбинировать конденсатор с резистором, да индуктивность на вход… В общем, тут можно книгу писать, а занимается этими занятными процессами отдельная наука – автоматическое управление. Кстати, именно на операционных усилителях сделаны аналоговые компьютеры, считающие дифференциальные уравнения с такой скоростью, что все цифровые компы нервно курят в уголке.

Устройство и принцип работы транзистора

Практическую значимость биполярного транзистора для современной электроники и электротехники невозможно переоценить. Биполярные транзисторы применяются сегодня повсюду: для генерации и усиления сигналов, в электрических преобразователях, в приемниках и передатчиках, да и много где еще, перечислять можно очень долго.

Поэтому в рамках данной статьи мы не будем касаться всевозможных сфер применения биполярных транзисторов, а только рассмотрим устройство и общий принцип действия этого замечательного полупроводникового прибора, который начиная с 1950-х годов перевернул всю электронную промышленность, а с 70-х годов сильно способствовал ускорению технического прогресса.

Биполярный транзистор — трехэлектродный полупроводниковый прибор, включающий себя в качестве основы три слоя чередующихся по типу проводимости. Таким образом, транзисторы бывают NPN и PNP-типа. Полупроводниковые материалы, из которых делают транзисторы, это в основном: кремний, германий, арсенид галлия и другие.

Кремний, германий и другие вещества изначально являются диэлектриками, но если в них добавить примеси, то они станут полупроводниками. Добавки в кремний типа фосфора (донор электронов) сделают кремний полупроводником N-типа, а если в кремний добавить бор (акцептор электронов), то кремний станет полупроводником P-типа.

В результате полупроводники N-типа обладают электронной проводимостью, а полупроводники P-типа — дырочной проводимостью. Как вы поняли, проводимость определяется по виду рабочих носителей заряда.

Так вот, трехслойный пирог из полупроводников P-типа и N-типа — это по сути и есть биполярный транзистор. К каждому слою припаяны выводы, которые называются: эмиттер, коллектор и база.

База — это управляющий проводимостью электрод. Эмиттер — это источник носителей тока в цепи. Коллектор — это то место, в направлении которого устремляются носители тока под действием приложенной к устройству ЭДС.

Условные обозначения биполярных транзисторов типов NPN и PNP на схемах различны. Данные обозначения как раз и отражают устройство и принцип действия транзистора в электрической цепи. Стрелка всегда изображается между эмиттером и базой. Направление стрелки — это направление управляющего тока, который подается в цепь база-эмиттер.

Читайте также:  Подсветка выключателя светодиодом своими руками

Так, у NPN-транзистора стрелка направлена от базы в сторону эмиттера, это значит что в активном режиме именно электроны из эмиттера устремятся к коллектору, при этом управляющий ток должен быть направлен от базы — к эмиттеру.

У PNP-трназистора наоборот: стрелка направлена от эмиттера в сторону базы, это значит что в активном режиме дырки из эмиттера устремляются к коллектору, при этом управляющий ток должен быть направлен от эмиттера — к базе.

Давайте разберемся, почему так происходит. При подаче постоянного положительного напряжения на базу NPN-транзистора (в районе 0,7 вольт) относительно его эмиттера, p-n-переход база-эмиттер данного NPN-транзистора (см. рисунок) смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь электроны могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.

При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. NPN-транзистор перейдет в открытое состояние.

Соотношение между током коллектора и управляющим током (базы) называется коэффициентом усиления транзистора по току. Данный параметр приводится в документации на транзистор, и может лежать в диапазоне от единиц до нескольких сотен.

При подаче постоянного отрицательного напряжения на базу PNP-транзистора (в районе -0,7 вольт) относительно его эмиттера, n-p-переход база-эмиттер данного PNP-транзистора смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь дырки могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.

Обратите внимание на полярность питания коллекторной цепи. При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. PNP-транзистор перейдет в открытое состояние.

Биполярные транзисторы обычно используются в различных устройствах в усилительном, барьерном или в ключевом режиме.

В усилительном режиме ток базы никогда не опускается ниже тока удержания, при котором транзистор все время пребывает в открытом проводящем состоянии. В данном режиме колебания малого тока базы инициируют соответствующие колебания значительно большего тока коллектора.

В ключевом режиме транзистор переходит из закрытого состояния в открытое, выполняя роль быстродействующего электронного коммутатора. В барьерном режиме — путем варьирования тока базы управляют током нагрузки, включенной в цепь коллектора.

Открытый коллектор принцип работы

Вентили ТТЛ и КМОП, которые мы сейчас рассматриваем, имеют двухтактные выходные схемы: высокий или низкий уровень подается на выход через открытый биполярный или МОП-транзистор. Такую схему, называемую активной нагрузкой, а в ТТЛ называемую также столбовым выходом, используют почти все логические элементы. Схема обеспечивает низкое выходное сопротивление в обоих состояниях, имеет малое время переключения и обладает более высокой помехоустойчивостью по сравнению с одиночным транзистором, который использует пассивный резистор в качестве коллекторной нагрузки. В случае КМОП применение активного выхода, кроме всего прочего, позволяет понизить рассеиваемую мощность.

Но существуют ситуации, при которых активный выход оказывается неудобным. Представим себе компьютерную систему, в которой несколько функциональных блоков должны обмениваться данными. Центральный процессор (ЦП), память и различные периферийные устройства должны иметь возможность передавать и получать -разрядные слова. И, мягко говоря, было бы неудобно использовать для соединения каждого устройства с каждым индивидуальный -жильный кабель. Для разрешения этой проблемы используется так называемая шина (или магистраль) данных, т. е. один -жильный кабель, доступный для всех устройств. Такая структура аналогична телефонному каналу коллективного пользования: в каждый момент времени «говорить» («передавать данные») может только одно устройство, а остальные могут только «слушать» («принимать данные»).

Если используется шинная система, то необходимо иметь соглашение о том, кому разрешено “говорить”.

В связи с этим употребляются такие термины, как «арбитр шины», «задатчик шины» и «управление шиной».

Для возбуждения шины нельзя использовать вентили (или другие схемы) с активным выходом, так как их нельзя отключить от общих информационных линий (в любой момент времени выходы устройств, подключенные к шине, будут находиться в состоянии высокого или низкого уровня). В этом случае необходим вентиль, выход которого может находиться в «обрыве», т. е. быть отключенным. Такие устройства выпускаются промышленностью и имеют две разновидности, которые носят названия «элементы с тремя состояниями» и «элементы с открытым коллектором».

Рис. 8.19. КМОП-вентиль И-НЕ состоянием: а – поясняющая схема; б – реализация с использованием внутренних КМОП-вентилей.

Логические схемы с тремя состояниями.

ИМС: счетчиках, защелках, регистрах и т.п., а также в вентилях и инверторах.

Устройство с выходом на 3 состояния функционирует подобно обычной логике с активным выходом, когда подан сигнал разрешения, при этом на выходе существует либо высокий, либо низкий уровень. Когда на входе разрешения пассивный уровень, схема отключает свой выход, так что другие устройства могут работать на ту же самую линию. Давайте рассмотрим это на примере.

Взгляд вперед: шины данных.

Рис. 8.20. Шина данных.

Заметим, что должна быть некоторая внешняя логика, которая обеспечивала надежность того, что устройства с тремя состояниями, подключенные к одним и тем же выходным линиям, не будут пытаться передавать в одно и то же время (что равносильно условию, официально называемому «соглашение шины»). В этом случае все хорошо, когда каждому устройству соответствует свой адрес.

Рис. 8.21. Маломощный ТТЛШ-вентиль с открытым коллектором.

Логика с открытым коллектором.

Рис. 8.23. Монтажное ИЛИ.

Заметим, что данные на шине при этом включении будут инвертированы. Каждую линию шины необходимо через нагрузочный резистор подключить к . К недостаткам логики с открытым коллектором следует отнести пониженные быстродействие и помехоустойчивость по сравнению с обычными схемами, использующими активную нагрузку. Вот почему драйверы с тремя состояниями являются основными для реализации шин в компьютерах. Однако существуют три ситуации, в которых вы должны использовать устройство с открытым коллектором: управление внешними нагрузками, «проводное ИЛИ» и внешние шины. Давайте рассмотрим их внимательно.

Управление внешней нагрузкой.

Проводное ИЛИ.

Проводное ИЛИ пользовалось скоротечной популярностью в ранние дни цифровой электроники, но и сегодня оно используется довольно редко за двумя исключениями: а) в логических семействах, известных как ЭСЛ (эмиттерсвязанная логика, выходы у которой можно назвать «открытый ), элементы могут безболезненно объединяться по проводному ИЛИ и б) существуют несколько частных линий в компьютерных шинах (наиболее значительная линия называется прерывание), функциями которых являются не передача информационных бит, а просто индикация того, что хотя бы одно устройство требует внимания.

В этом случае вы используете проводное ИЛИ, поскольку оно дает то, что вы хотите, и не требуется дополнительной внешней логики для предотвращения споров.

Внешние шины. В приложениях, где скорость не очень важна, вы иногда видите драйверы с открытым коллектором, используемые для возбуждения шин. Наиболее частый случай для шин – это выдача данных из компьютеров. Общими примерами являются шины, используемые для связи компьютера с дисководом, и инструментальная шина IEEE-488 (также называемая или ). Подробнее об этом в гл. 10 и 11.

Читайте далее:
Ссылка на основную публикацию
Adblock
detector