Откуда берут электричество - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Откуда берут электричество

Откуда берется электричество? Источники электроэнергии

Жизнь современного человека организована таким образом, что ее инфраструктурное обеспечение задействует множество компонентов с разными технико-функциональными свойствами. К таким относится и электроэнергия. Рядовой потребитель не видит и не ощущает, как именно она выполняет свои задачи, но конечный результат вполне заметен в работе бытовой техники, да и не только. При этом вопросы, касающиеся того, откуда берется электричество, в представлении многих пользователей тех же домашних приборов остаются нераскрытыми. Для расширения знаний в этой области стоит начать с понятия об электроэнергии как таковой.

Что такое электричество?

Сложность данного понятия вполне объяснима, так как энергию невозможно обозначить как обычный предмет или явление, доступное визуальному восприятию. При этом существуют два подхода к ответу на вопрос о том, что такое электричество. Определение ученых гласит, что электричество является потоком заряженных частиц, который характеризуется направленным движением. Как правило, под частицами понимаются электроны.

В самой же отрасли энергетики чаще рассматривают электроэнергию как продукт, вырабатываемый подстанциями. С этой точки зрения имеют значение и элементы, которые непосредственно участвуют в процессе формирования и передачи тока. То есть в данном случае рассматривается энергетическое поле, создаваемое вокруг проводника или другого заряженного тела. Чтобы приблизить такое понимание энергии к реальному наблюдению, следует разобраться с таким вопросом: откуда берется электричество? Существуют разные технические средства для производства тока, и все они подчинены одной задаче — снабжению конечных потребителей. Впрочем, до момента, когда пользователи смогут обеспечить свои приборы энергией, она должна пройти несколько этапов.

Выработка электричества

На сегодняшний день в сфере энергетики применяется порядка 10 видов станций, которые обеспечивают генерацию электричества. Это процесс, в результате которого происходит преобразование определенного вида энергии в токовый заряд. Иными словами, электричество формируется в ходе переработки другой энергии. В частности, на специализированных подстанциях используют в качестве основного рабочего ресурса тепловую, ветреную, приливную, геотермальную и другие виды энергии. Отвечая на вопрос относительно того, откуда приходит электричество, стоит отметить инфраструктуру, которой обеспечена каждая подстанция. Любой электрогенератор обеспечен сложной системой функциональных узлов и сетей, которые позволяют аккумулировать вырабатываемую энергию и готовить ее для дальнейшей передачи на узлы распределения.

Традиционные электростанции

Хотя за последние годы тенденции в энергетике меняются быстрыми темпами, можно выделить основные виды электростанций, работающих по классическим принципам. В первую очередь это объекты тепловой генерации. Выработка ресурса производится в результате сгорания органического топлива и последующего преобразования выделяемой тепловой энергии. При этом существуют разные виды таких станций, в числе которых теплофикационные и конденсационные. Главным отличием между ними является возможность объектов второго типа также генерировать и тепловые потоки. То есть при ответе на вопрос о том, откуда берется электричество, можно отметить и станции, которые параллельно производят и другие виды энергии. Кроме тепловых объектов выработки, достаточно распространены гидро- и атомные станции. В первом случае предполагается преобразование энергии от движения воды, а во втором — в результате деления атомов в специальных реакторах.

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии. Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома. Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от интенсивности света.

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети. Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей. Организации-поставщики прокладывают специальные трассы для организации сетевого распределения электроэнергии, используя при этом разные виды кабелей.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Управление объектами электроэнергетики

Помимо организации электросетевого хозяйства, которое технически обеспечивает возможность передачи и распределения энергии для конечных потребителей, работа данного комплекса невозможна без систем управления. Для реализации этих задач поставщики используют оперативно-диспетчерские пункты, сотрудники которых реализуют централизованный контроль и управление работой вверенных им объектов электроэнергетики. В частности, подобные службы контролируют параметры сетей, к которым подключаются потребители электроэнергии на разных уровнях. Отдельно стоит отметить и отделы диспетчерских пунктов, которые выполняют техобслуживание сетей, предотвращая износы и восстанавливая повреждения на отдельных участках линий.

Заключение

За все время существования энергетическая отрасль претерпела несколько этапов своего развития. В последнее время наблюдаются новые перемены, обусловленные активным освоением альтернативных источников энергии. Успешное развитие этих направлений уже сегодня дает возможность использовать электричество в доме, полученное от индивидуальных бытовых генераторов независимо от центральных сетей. Впрочем, и в этих отраслях есть определенные сложности. В первую очередь они связаны с финансовыми затратами на закупку и монтаж соответствующего оборудования — тех же солнечных панелей с аккумуляторами. Но поскольку энергия, вырабатываемая от альтернативных источников, является полностью бесплатной, то перспективы дальнейшего продвижения этих областей сохраняют актуальность для разных категорий потребителей.

Электрический ток, откуда он берется и как добирается до наших домов?

Уважаемые читатели и просто посетители нашего журнала! Мы достаточно много и довольно подробно пишем о том, какими способами, при помощи каких именно энергетических ресурсов, производится электроэнергия на электростанциях. Атом, газ, вода – были нашими с вами «героями», разве что до альтернативных , «зеленых» вариантов еще не успели добраться. Но, если присмотреться внимательно, рассказы были далеко не полными. Еще ни разу мы не пробовали отследить детально путь электроэнергии от турбины до наших с вами розеток, с тропинками на освещение наших населенных пунктов и дорог, на обеспечение работы многочисленных насосов, обеспечивающих комфорт наших с вами жилищ.

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века. Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством. Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы. Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих. Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Читайте также:  Принцип работы светодиодных ламп для дома

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

Что такое электрический ток, откуда он берется и как добирается до наших домов?

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы.

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму. А за городом на природе, освещаемой только светом звезд?

Ночное освещение улицы, Фото: pixabay.com

Удалять жару из офисов, куда с трудом добрался, без электричества тоже нечем. Можно, конечно, открыть окна и обвязать голову мокрым полотенцем, но надолго ли это поможет. Качающим воду насосам тоже нужно электричество, или придется регулярно ходить с ведром на ручную колонку.

Кофе в офисе? Забудьте! Только если всем сразу и не часто, чтобы дым от сгорающего угля не отравил рабочую атмосферу. Или за дополнительную денежку получать из соседнего трактира.

Отправить письмо в соседний офис? Надо взять бумагу, написать письмо от руки, затем ножками отнести его. На другой конец города? Вызываем курьера. В другую страну? А вы знаете, сколько это будет стоить? К тому же ответа не ждите ранее полугода из соседних стран и от года до пяти из-за океана.

Вернулись домой, надо зажечь свечи. Читать при них – мучение для глаз, поэтому придется заняться чем-то другим. А чем? ТВ нет, компьютеров нет, смартфонов – и тех нет, ибо нечем их запитать. Лежи на лавке и гляди в потолок! Хотя рождаемость точно повысится.

К этому следует добавить, что все пластмассы и удобрения сейчас получают из природного газа на заводах, где крутятся тысячи моторов, приводимых в движение всё тем же электричеством. Отсюда список доступных удобрений сильно укорачивается до тех, которые можно приготовить из природного сырья в чанах, размешивая в них ядовитую жижу лопатками с ручным, водяным или паровым приводом. Как результат, сильно сжимается объем производимых продуктов.

О пластмассах – забудьте! Эбонит – наше высшее счастье из длинного списка. А из металлов самым доступным становится чугун. Из медицины на сцену в качестве главного орудия снова выступают стетоскоп и быстро ржавеющий скальпель. Остальное канет в Лету.

Продолжать можно долго, но идея должна быть уже понятна. Нам нужно электричество. Мы можем выжить без него, но что это будет за жизнь! Так откуда же появилось это волшебное электричество?

Открытие электричества

Все мы знаем физическую истину, что ничто никуда бесследно не исчезает, а только переходит из одного состояния в другое. С этой истиной столкнулся греческий философ Фалес Милетский в VII веке до н. э. обнаружив электричество как вид энергии, натирая кусок янтаря шерстью. Часть механической энергии при этом перешла в электрическую и янтарь (на древнегреческом «электрон») электризовался, то есть приобрел свойства притягивать легкие предметы.

Этот вид электричества сейчас называют статическим, и он нашел себе широкое применение, в том числе в системах очистки газов на электростанциях. Но в Древней Греции ему не нашлось применения и, если бы Фалес Милетский не оставил после себя записей о своих экспериментах, мы бы никогда не узнали, кто был тот первый мыслитель, заостривший свое внимание на виде энергии, являющейся едва ли не самой чистой среди всех, с которыми мы знакомы по настоящий день. Ею также наиболее удобно управлять.

Сам термин «электричество» – то есть «янтарность» – ввел в употребление Уильям Гилберт в 1600 году. С этого времени с электричеством начинают широко экспериментировать, пытаясь разгадать его природу.

Как результат, с 1600 по 1747 годы последовала череда увлекательных открытий и появилась первая теория электричества, созданная американцем Бенджамином Франклином. Он ввел понятие положительного и отрицательного заряда, изобрел молниеотвод и с его помощью доказал электрическую природу молний.

Далее в 1785 происходит открытие закона Кулона, а в 1800 году итальянец Вольта изобретает гальванический элемент (первый источник постоянного тока, предшественник нынешних батарей и аккумуляторов), представлявший собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. С появлением этого, стабильного по тем временам, источника электричества новые и важнейшие открытия быстро следуют одно за другим.

Майкл Фарадей, читающий рождественскую лекцию в Королевском институте. Фрагмент литографии, Фото: republic.ru

В 1820 году датский физик Эрстед обнаружил электромагнитное взаимодействие: замыкая и размыкая цепь с постоянным током, он заметил цикличные колебания стрелки компаса, расположенной вблизи проводника. А в 1821 году французский физик Ампер открыл, что вокруг проводника с переменным электрическим током образуется переменное электромагнитное поле. Это позволило уже Майклу Фарадею в 1831 году открыть электромагнитную индукцию, описать уравнениями электрическое и магнитное поле и создать первый электрогенератор переменного тока. Фарадей вдвигал катушку с проводом в намагниченный сердечник и в результате в обмотке катушки появлялся электрический ток. Фарадей также придумал первый электродвигатель – проводник с электрическим током, вращающийся вокруг постоянного магнита.

Всех участников «гонки за электричеством» невозможно упомянуть в этой статье, но результатом их усилий явилась доказуемая экспериментом теория, детально описывающая электричество и магнетизм, в соответствии с которой мы производим сейчас всё, что требует электричества для своего функционирования.

Постоянный или переменный ток?

В конце 1880-х годов, еще до появления мировых стандартов на производство, распределение и потребление промышленной электроэнергии, разразилась битва между сторонниками использования постоянного и переменного тока. Во главе противостоящих друг другу армий встали Тесла и Эдисон.

Оба были талантливыми изобретателями. Разве что Эдисон обладал куда более развитыми способностями к бизнесу и к моменту начала «войны» успел запатентовать множество технических решений, в которых использовался постоянный ток (в то время в США постоянный ток являлся стандартом по умолчанию; постоянным называется ток, направление которого не меняется по времени).

Но была одна проблема: в те времена постоянный ток было очень трудно трансформировать в более высокое или низкое напряжение. Ведь если сегодня мы получаем электроэнергию напряжением 240 вольт, а наш телефон требует 5 вольт, мы втыкаем в розетку универсальную коробочку, которая преобразует что угодно во что угодно в нужном нам диапазоне, используя современные транзисторы, управляемые крошечными логическими схемами с изощренным программным обеспечением. А что можно было сделать тогда, когда до изобретения самых примитивных транзисторов оставалось еще 70 лет? И если по условиям электрических потерь требовалось повысить напряжение до 100’000 вольт, чтобы доставить электроэнергию на расстояние 100 или 200 километров, любые столбы Вольта и примитивные генераторы постоянного тока оказывались бессильны.

Понимая это, Тесла выступал за переменный ток, трансформация которого в любые уровни напряжения не представляла труда и в те времена (переменным считается ток, величина и направление которого периодически меняются со временем даже при неизменном сопротивлении этому току; при частоте сети 50Гц это происходит 50 раз в секунду). Эдисон же, не желая терять патентные отчисления себе, развернул кампанию по дискредитации переменного тока. Он уверял, что этот вид тока особо опасен для всего живого, и в доказательство публично убивал бродячих кошек и собак, прикладывая к ним электроды, соединенные с источником переменного тока.

Эдисон проиграл битву, когда Тесла предложил за 399’000 долларов осветить весь город Буффало против предложения Эдисона сделать то же за 554’000 долларов. В день, когда город осветился электричеством, полученным от станции, расположенной у Ниагарского водопада и вырабатывающей именно переменный ток, компания General Electric выкинула постоянный ток из рассмотрения в своих будущих бизнес-проектах, полностью поддержав своим влиянием и деньгами переменный ток.

Читайте также:  Обогреватель трубопровода электрический

Томас Эдисон (США), Рис.: cdn.redshift.autodesk.com

Может показаться, что переменный ток навсегда завоевал мир. Однако у него имеются наследственные болячки, растущие из самого факта переменности. Прежде всего это электрические потери, связанные с потерями в индуктивной составляющей проводов ЛЭП, которые используются для передачи электроэнергии на большие расстояния. Эти потери в 10-20 раз превышают возможные потери в тех же самых ЛЭП в случае протекания по ним постоянного тока. Плюс сказывается повышенная сложность синхронизации узлов энергосистемы (для пущего понимания, скажем, отдельных городов), ведь для этого требуется не только выровнять напряжения узлов, но и их фазу, ибо переменный ток представляет собой волну синусоиды.

Отсюда видна и значительно большая приверженность к «качаниям» узлов по отношению к друг другу, когда напряжение-частота начинают меняться вверх-вниз, на что обычный потребитель обращает внимание, когда у него в квартире мигает свет. Обычно это предвестник конца совместной работы узлов: связи между ними рвутся и какие-то узлы оказываются с дефицитом энергии, что ведет к снижению в них частоты (т.е. к снижению скорости вращения тех же электродвигателей и вентиляторов), а какие-то с избытком энергии, приводящем к опасному повышению напряжения по всему узлу, включая наши розетки с подключенными к ним устройствам. А при достаточно большой длине ЛЭП, что, к примеру, критично для РФ, начинают проявляться и другие портящие настроение электрикам эффекты. Не вдаваясь в детали, можно указать, что передавать электроэнергию переменного тока по проводам на сверхдальние расстояния становится трудно, а иногда и невозможно. Для сведения, длина волны частотой 50 Гц составляет 6000 км, и при приближении к половине этой длины – 3000 км – начинают сказываться эффекты бегущих и стоячих волн плюс эффекты, связанные с резонансом.

Эти эффекты отсутствуют при использовании постоянного тока. А значит, повышается стабильность работы энергосистемы в целом. Принимая это во внимание, а также то, что компьютеры, светодиоды, солнечные панели, аккумуляторы и многое другое используют для своей работы именно постоянный ток, можно заключить: война с постоянным током еще не проиграна. Современным преобразователям постоянного тока на любые используемые сегодня мощности и напряжения осталось совсем немного, чтобы сравняться в цене с привычными человечеству трансформаторами переменного тока. После чего, видимо, начнется триумфальное шествие по планете уже постоянного тока.

Я понимаю, как вырабатывается электричество. Но откуда берется электричество? Что такое ток, его природа?

У некоторых частиц (в том числе и важнейших в нашем мире – электронов и протонов) есть электрический заряд. Что такое этот заряд? Это наблюдаемое нами явление, которое состоит в следующем:

частица представляет собой «облако состояний» – то есть она не занимает в данный момент конкретную точку пространства, а находится с некоторой вероятностью в данной точке (а с некоторой вероятностью в соседней точке, и т.д.)

если рядом находятся 2 протона или 2 электрона, то вероятность нахождения частицы в этом облаке меняется – чем ближе к соседу, тем вероятность уменьшается, а чем дальше – тем увеличивается. Это наблюдается нами, как отталкивание одинаково заряженных частиц,

если рядом протон и электрон (частицы с разными знаками зарядов), то форма облака вероятностей тоже меняется – электрон как бы стремится занять пространство ближе к протону, но не сливается с ним в одной точке – облако вероятностей образует орбиту вокруг (ее форма в атоме зависит от уже существующих рядом электронов и от от их энергии).

Природа заряда пока не ясна, то есть мы не можем сказать, почему изменение вероятностей происходит таким образом и с такой интенсивностью. Это явление, которое мы можем лишь наблюдать.

Если у нас есть проводник (вещество, где электроны могут относительно легко отрываться от атомов), то мы сможем создать ток, затрачивая энергию на создание в одной точке проводника избытка электронов, а в другой – недостатка (то есть относительного избытка положительных зарядов), тогда электроны начнут стремиться из первой области во вторую, что мы наблюдаем, как электрический ток.

Но электроны же не летят от точки к точке по проводу, насколько я поимаю?

Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до “фундаментальной” кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.

На самый поверхностный взгляд природа тока кажется простой: ток – это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.

В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:

  • В металлах есть свободные электроны;
  • В металлических и керамических сверхпроводниках – тоже электроны;
  • В жидкостях – ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
  • В газах – снова ионы, а также электроны;
  • А вот в полупроводниках электроны несвободны и могут двигаться “эстафетно”. Т.е. двигаться может не электрон, а как бы место, где его нет – “дырка”. Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.
    У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.

Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси “Пора по пиву”: “. если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ. ” 🙂

И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно 🙂 вроде бы неделимые) несущие заряд – это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон – есть и поле) объясняет массу ряда частиц, а масса – это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд – это в чём-то родственные вопросы.

Многое известно о природе электрического тока, но самое главное пока нет.

Откуда берут электричество

Войти

Откуда берется электричество?

В творческой поездке “Энергокруиз”, организованной ТГК-1 с 20 по 25 июля в честь 10-летия своего основания, мне посчастливилось воочию увидеть, как зарождается электричество. Запись ранее По ГЭС Северо-Запада России с ТГК-1


Как гордо начинает звучать слово «человек», когда вот так – благодаря простой поездке на автобусе, воочию убеждаешься, на что мы способны. Это волнообразное слово энергетика… Ведь и в самом деле – мы черпаем свет звезд!

Наверное, каждому пользователю в душе интересно, откуда берутся эти самые электроны в электрической лампочке. Все знают – вырабатываются на ГЭС, ТЭЦ, с атомных станций. Меньше людей слышали о солнечных, ветряных, геотермальных, приливных станциях, ещё меньше – о ГРЭС (государственные районные электрические станции), и ГАЭС. И уж совсем мало кто знает, как это оказывается сложно – управлять электричеством.

Читайте также:  Принцип работы дренажного насоса с поплавком

В чём сложность? И вот тут в двух словах не объяснить – приходится лезть в дебри энергетики. А знать стоит, потому что именно из этих знаний складывается самая волнующая нас интрига – цена за киловатт.

Первая хитрость – электричество нельзя запасти “на завтра”, и приходится ориентироваться на текущую выработку, а потери при транспортировке высоки – поэтому энергетики вынуждены приспосабливаться буквально на каждом шагу: использовать низкий ток, менять сечения проводов, использовать повышающие и понижающие трансформаторы, дозировать электроэнергию дополнительными станциями.

Мало того, трудности возникают и в частном порядке – есть пики и провалы в энергопотреблении, а тяжесть проводов может не выдержать погодных условий – например, снегопада. Вот почему земля буквально опутана проводами разных сортов – электричество нужно всем и каждому, желательно – бесплатно, а подать его в нужной мощности и за деньги не легко.

Вот пример. Генератор может выдавать только столько мощности, сколько может потребить потребитель. Если даже генератор имеет установленную мощность на 100 МВт, то он не сможет ее набрать, если нет соотвестствующей нагрузки. Как частный случай – выдаст, но с отклонением от принятой частоты в 50Гц, что сделает невозможным использовать такую электроэнергию, а это – невосполнимые затраты.

Всё начинается именно с генератора – это чудесное устройство невообразимым, но легко объяснимым физикой способом вырабатывает с помощью силы воды поток электронов, которые начинают своё экстравагантное путешествие по проводам – к чайнику.

ГЭС преобразует механическую энергию воды в электрическую – в этом она, кстати, самая экологичная. Вода «давит» на лопасти рабочего колеса, которое на одном валу с генератором. Чем больше напор – тем больше давление. Генератор представляет из себя ротор и статор. Статор – неподвижная часть с обмоткой. Ротор вращается в электрическом поле статора, возникает Электродвижущая сила (ЭДС). С выводных устройств идет съем электроэнергии – это описание принципа работы любого генератора.

Но вот в чём чудо – в этом “пахтании океана” появляются электроны, и они не одиноки. Есть ещё электрически заряженные частицы, квази частицы. Электроны в проводах можно сравнить с рыбами в воде: проводники для них – среда обитания. В диэлектриках жизни нет)

Трансформаторами мощность и понижают, и повышают, и что там происходит с частицами – можно представить. И через поля проходят – правда, магнитные; притягиваются и отталкиваются, исчезают – и возникают! В путешествиях по подстанциям могут менять и вид энергии, и форму. Двигаются с небольшой скоростью, но по отношению с неподвижными собратьями находятся на границе, которая уже имеет скорость света. У электронов море приключений прежде, чем они постучатся в ваш дом.


Первое электричество, которое мы наблюдаем наглядно!

Поздороваться с электронами нельзя, как и поговорить. По сути они – просто другая форма жизни, которую нам по счастливой случайности или глубокой закономерности удалось приручить – как оленей, кошек, окучить картошку. С этой точки зрения наше существование на планете явление столь же необычное и интересное, как и бег электронов.

Но вернёмся на Землю. Для нас важно – уровень напряжения, частота электрического тока в сети. Суточная неравномерность потребления регулируется автоматикой: у системного оператора стоит основной управляющий блок станциями, которые в этой системе состоят . Генераторы например работают в системе ГРАМ – “групповое регулирование активной мощности”. Система распределяет нагрузку оптимально для каждого генератора. Естественно, стараются применять типовые генераторы. Тогда случае изменения нагрузки потребителем система ГРАМ загружает или разгружает генераторы за секунды.

Есть еще система АРЧМ – “автоматическое регулирование частоты и мощности”. Это специальная программа, которая воздействует на управление регуляторами скоростей. Ее задача – держать заданные показатели в норме. Допустим, задано держать переток из Кольской энергосистемы в Карельскую мощность в 500 МВт. И вдруг «отваливается» какой-то крупный потребитель на 50 МВт. Значит, система АРЧМ должна воздействовать на некоторые управляющие элементы и где-то в энергосистеме снизить их мощность.

Система действует в течении секунд. В пределах 10 секунд обычно устраняется возмущение. При очень крупных дисбалансах установка равновесия может занимать 1-2 минуты.


Наглядное представление о турбине

То есть ГРАМ управляет в масштабе одной станции, а АРЧМ управляет станциями. К сожалению, и это не всегда эффективно. Допустим, маленькая станция, 6 МВт. А потребитель в нашем примере «отвалился» на 50 МВт. Что там регулировать?

Потому АРЧМ стараются ставить на больших станциях, например, на Верхнетуломской ГЭС, на Серебрянских, на Териберке. На Княжегубской ГЭС. Каждая система управления это немалые расходы на монтаж и содержание, хоть процессы и автоматизированы. И всё это – только начальные дебри!


Окончание следует

За предоставленную информацию спасибо пресс-службе ОАО “ТГК-1” и лично Роману Поликарпову

Откуда берётся электричество — видео

Человек в современном мире настолько привык к достижениям науки и техники, что трудно представить, как можно обойтись без электричества. Электрическим током мир начал пользоваться с 1800 года, тогда итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта изобрёл первую в мире батарею и тем самым дал первый надёжный постоянный источник электроэнергии. Алессандро Вольта с 1774 года по 1779 год преподавал физику в гимназии в Комо, в 1779 году стал профессором университета в Павии, а с 1815 года — директор философского факультета в Падуе. Алессандро Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока (Вольтов столб). В честь этого события фамилию учёного увековечили, и с того времени напряжение тока измеряется в вольтах. Подумать только, если бы не было электричества, то человеку пришлось бы отказаться от большинства благ цивилизации и пересесть с шикарных автомобилей на одну лошадиную силу. Откуда же берётся электричество, и каким образом оно попадает к потребителю электроэнергии?

Электрический ток, который попадает в розетки и светильники вырабатывается на электростанции с помощью специальной машины – турбоэлектрогенератора. Давайте разберёмся, как он работает. Неподвижная часть турбоэлектрогенератора называется статором, он представляет собой двухполярный магнит, внутри статора вращается ротор, который обмотан медной проволокой. Вращение ротора внутри статора приводит к постоянной смене полярности, и электроны приходят в движение. По законам физики в данном устройстве появляется магнитное поле и в обмотке провода ротора возникает (индуцируется) направленное движение заряженных частиц. Так рождается электрический ток. Но чтобы электрический ток вырабатывался, какая-то механическая сила должна постоянно вращать ротор. Давайте разберёмся, как это происходит на теплоэлектростанции.

В котле нагревают воду до температуры 450 градусов, вода превращается в пар и под высоким давлением пар поступает из котла на лопатки турбины, что приводит в движение вал турбины, который вращается с частотой в 3000 оборотов в минуту, приводя в движение вал электрогенератора. Кстати, первая в мире электростанция общественного пользования была построена в Нью-Йорке в 1882 году. Она вырабатывала постоянный ток и питала 10000 ламп. Современные электростанции вырабатывают в 1000 раз больше электроэнергии. Одна электростанция спокойно может осветить и обогреть город с населением в 100000 человек.

По кабелю электрический ток поступает на распределительные подстанции для измерения и преобразования. Трансформаторы повышают напряжение тока до 10000 вольт и более. Вы спросите, зачем? При высоком напряжении происходит меньше потерь при транспортировке электроэнергии от трансформаторов до потребителя электроэнергии по проводам. 10000 вольт по линиям электропередачи (провода), со скоростью до 3000 километров в секунду, пройдут немалый путь, прежде чем попадут к потребителю (заводы, фабрики, офисы, квартиры, дачи). Далее электрический ток поступает на понижающие трансформаторные подстанции. Трансформатор должен уменьшить поступившее напряжение до 220 вольт. Почему уменьшается до 220 вольт? Такой в России стандарт. Только после понижения, электричество поступит по проводам и кабелям в распределительные сети, а затем к потребителям электроэнергии.

Энергетические компании, поставляющие электроэнергию, заинтересованы в модернизации и расширении рынка сбыта электроэнергии. Они нанимают подрядные организации (электромонтажная организация), которые в свою очередь выполняют электромонтажные работы по прокладке линий электропередач. Так как доставка электроэнергии к потребителю в удалённые населённые пункты является первостепенной задачей энергетических компаний, прокладка кабеля или провода воздушной линии электропередач является единственным способом качественной и надёжной передачи электроэнергии на большие расстояния. От скорейшего развития и модернизации систем электроснабжения зависит экономическое благосостояние нашей страны.

Читайте также:

  • Упавший с крыши снег, оставил дом без электроэнергии — видео

Один Комментарий на ”Откуда берётся электричество — видео”

Слава богу не атомная станция.Вольтову почет и уважение.мне бы столько ума.

Читайте далее:
Ссылка на основную публикацию
×
×
Adblock
detector