Принцип работы динамо машины - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Принцип работы динамо машины

Что такое динамо-машина. Первые генераторы постоянного тока

Динамо-машинами в позапрошлом веке стали называть генераторы постоянного тока, – первые промышленные генераторы, которые позже были вытеснены генераторами переменного тока, пригодного для преобразования посредством трансформаторов, и крайне удобного для передачи на большие расстояния с незначительными потерями.

Сегодня под словом «динамо», как правило, подразумевают маленькие велосипедные генераторы (для фар) или ручные генераторы (для туристических фонариков). Что касается промышленных генераторов, то на сегодняшний день все это – генераторы переменного тока. Давайте, однако, вспомним, как развивались и совершенствовались первые «динамо».

Первый образец генератора постоянного тока, или униполярного динамо, был предложен в далеком 1832 году Майклом Фарадеем, когда он только открыл явление электромагнитной индукции. Это был так называемый «диск Фарадея» – простейший генератор постоянного тока. Статором в нем служил подковообразный магнит, а в качестве ротора выступал вращаемый вручную медный диск, ось и край которого пребывали в контакте с токосъемными щетками.

Когда диск вращали, то в той части диска, которая пересекала магнитный поток между полюсами магнита статора, наводилась ЭДС, приводящая, в случае если цепь между щетками была замкнута на нагрузку, к появлению радиального тока в диске. Подобные униполярные генераторы по сей день используются там, где требуются большие постоянные токи без выпрямления.

Генератор переменного тока впервые построил француз Ипполит Пикси, это произошло в том же 1832 году. Статор динамо-машины содержал включенные последовательно пару катушек, ротор представлял собой подковообразный постоянный магнит, кроме того в конструкции имелся щеточный коммутатор.

Магнит вращался, пересекал магнитным потоком сердечники катушек, наводил в них гармоническую ЭДС. А автоматический коммутатор служил для выпрямления и получения в нагрузке постоянного пульсирующего тока.

Позже, в 1842 году, Якоби предложит разместить магниты на статоре, а обмотку – на роторе, который также вращался бы через редуктор. Это сделает генератор более компактным.

В 1856 году, для питания серийных дуговых ламп Фредерика Холмса, (эти лампы использовали в прожекторах маяков), самим Фредериком Холмсом была предложена конструкция генератора, похожая на генератор Якоби, но дополненная центробежным регулятором Уатта для поддержания напряжения на лампе постоянным при разном токе нагрузки, что достигалось путем автоматического сдвига щеток.

Статор содержал 50 магнитов, а конструкция в общем весила 4 тонны, и развивала мощность чуть больше 7 кВт. Было выпущено примерно 100 таких генераторов под маркой «Альянс».

Между тем, машины с постоянными магнитами отличались одним существенным недостатком — магниты теряли со временем намагниченность и портились от вибрации, в итоге генерируемое машиной напряжение становилось со временем все ниже и ниже. При этом намагниченностью нельзя было управлять, чтобы стабилизировать напряжение.

В качестве решения пришла идея электромагнитного возбуждения. Идея пришла в голову английского изобретателя Генри Уайльда, который в 1864 году запатентовал генератор с возбудителем на постоянном магните, – магнит возбуждения просто монтировался на валу генератора.

Позже настоящую революцию в генераторах совершит немецкий инженер Вернер Сименс, который откроет подлинный динамоэлектрический принцип, и поставит производство новых генераторов постоянного тока на поток.

Принцип самовозбуждения заключается в том, чтобы использовать остаточную намагниченность сердечника ротора для пускового возбуждения, а затем, когда генератор возбудится, использовать в качестве намагничивающего тока ток нагрузки, или включить в работу специальную обмотку возбуждения, питаемую генерируемым током параллельно нагрузке. В результате, положительная обратная связь приведет к увеличению магнитного потока возбуждения генерируемым током.

В числе первых принцип самовозбуждения, или динамоэлектрический принцип, отметит инженер из Дании Сорен Хиорт. Он упомянет в своем патенте от 1854 года возможность использования остаточной намагниченности с целью реализации явления электромагнитной индукции для получения генерации, однако, опасаясь того, что остаточного магнитного потока будет недостаточно, Хиорт предложит дополнить конструкцию динамо постоянными магнитами. Этот генератор так и не будет воплощен.

Позже, в 1856 году, аналогичную идею выскажет Аньеш Йедлик — член Венгерской академии наук, но ничего так и не запатентует. Только спустя 10 лет Самюэль Варлей, ученик Фарадея, реализует на практике принцип самовозбуждающегося динамо. Его заявка на патент (в 1866 году) содержала описание устройства очень похожего на генератор Якоби, только постоянные магниты уже были заменены обмоткой возбуждения — электромагнитами возбуждения. Перед стартом сердечники намагничивались постоянным током.

В начале 1867 года в Берлинской Академии наук с докладам выступал изобретатель Вернер Сименс. Он представил публике генератор похожий на генератор Варлея, названный «динамо-машиной». Старт машины осуществлялся в режиме двигателя, для того чтобы обмотки возбуждения намагнитились. Затем машина превращалась в генератор.

Это была настоящая революция в понимании и проектировании электрических машин. В Германии начался широкий выпуск динамо-машин Сименса — генераторов постоянного тока с самовозбуждением — первых промышленных динамо-машин.

Конструкция динамо-машин с течением времени менялась: Теофил Грамм, в том же 1867 году, предложил кольцевой якорь, а в 1872 году главный конструктор компании Сименс-Гальске, Гефнер Альтенек, предложит барабанную намотку.

Так генераторы постоянного тока примут свой окончательный облик. В 19 веке, с переходом на переменный ток, гидроэлектростанции и тепловые электростанции станут вырабатывать уже переменный ток на генераторах переменного тока. Но это уже совсем другая история.

Динамо-машина. Виды и работа. Применение и особенности

Динамо-машина – это генератор постоянного тока, который вырабатывает электрическое напряжение в результате вращения специального приводного механизма. Такое устройство широко применялось до появления генераторов переменного тока. Сейчас динамо-машины встречаются значительно реже. Их в основном используют для питания осветительного оборудования на велосипедах, а также как часть конструкции некоторых видов ручных фонариков, радиоприемников, а также портативных зарядных устройств для мобильных телефонов, MP3 плееров и планшетов.

Как работает динамо-машина

Устройство состоит из катушки индуктивности, которая при вращении в магнитном поле вырабатывает электрическую энергию. Получаемый ток может передаваться оборудованию напрямую или заряжать аккумуляторную батарею, которая уже в дальнейшем будет питать потребителей. Принцип работы машины объясняется физическим законом Фарадея. Эффективность устройства напрямую зависит от скорости вращения катушки. Чем она выше, тем большее напряжение и силу тока можно получить.

Для подключения к простейшей динамо-машине можно использовать только такое оборудование, которое нормально переносит резкие скачки параметров напряжения. В первую очередь это светодиодные лампы. Для питания более чувствительного оборудования в конструкции предусматривается специальный контроллер, который предотвращает передачу критического заряда, способного навредить. Особенно это важно, если машина предназначена для подзарядки мобильного телефона.

Динамо машины для велосипедов

Самым эффективным и функциональным решением использования генератора постоянного тока (велогенератор) является его установка на велосипед. Такая динамо-машина позволяет получать электричество во время движения, поскольку подключается к переднему или заднему колесу. В ночное время без дополнительных усилий можно освещать дорогу впереди. Это повышает комфорт и безопасность движения. Кроме переднего фонаря генератор может питать и заднюю подсветку.

У таких динамо-машин может иметься встроенная батарея, которая сначала накапливает электричество, а уже потом передает его потребителям. Это исключает пульсацию света. Если аккумулятора нет, то яркость зависит только от скорости вращения колеса. При езде под гору, когда велосипед сильно замедляется, свет становится очень тусклым и практический не позволяет просматривать дорогу впереди. Современные велосипедные генераторы в основном выдают напряжение 6В. Это обусловлено тем, что они питают светодиоды, для которых этого вполне достаточно. Старые динамо-машины, известные велосипедистам советских времен, создавали напряжение 12В. Это было вызвано тем, что они питали обыкновенные лампы накаливания, которые встречаются на мотоциклах или автомобилях.

Для велосипедов применяются различные конструкции динамо-машин. Среди самых популярных разновидностей можно отметить:
  • Бутылочная.
  • Втулочная.
  • Цепная.
  • Бесконтактная.
Бутылочные

Такая динамо-машина получила свое название в связи со своей схожестью по форме с обыкновенной стеклянной бутылкой. В ее конструкции предусматривается специальное колесико, которое прикладывается к боковой стороне протектора колеса велосипеда. В результате трения оно поворачивается, что приводит к выработке электричества. Такой вариант весьма распространен в связи с простотой установки и невысокой стоимостью. Эта конструкция имеет откидной механизм, благодаря которому генератор можно при необходимости прикладывать к покрышке колеса или убирать в дневное время, когда свет не нужен.

Эта конструкция не лишена и недостатков. В первую очередь она очень шумная, а кроме этого ускоряет износ шины. При долгом пользовании на покрышке остается глубокая борозда истертая колесиком генератора. Также создается сопротивление движению оборотам велосипедного колеса, что снижает накат. В сырую погоду, когда шины мокрые, колесико динамо-машины проскальзывает, и эффективность выработки электричества снижается.

Втулочные

Такая динамо-машина монтируется в колесо. Это конструкция весьма удачна, поскольку практически не создает шума. Кроме того, она не останавливает вращение колес, что сохраняет набранную скорость езды. Втулочная машина имеет недостаток в виде большой стоимости, а также сложности установки. Не во всех велосипедах возможно провести монтаж миниатюрного генератора без необходимости сложных ухищрений и переделок.

Цепные

Цепные динамо-машины имеют внутри специальную звездочку, которая при контакте с цепью начинает вращать катушку генератора. Такая конструкция весьма хлипкая и если ее плохо зажать, то может отклониться и попасть в спицы, в результате повредив колесо и вызвав аварийную ситуацию. Положительным моментом таких динамо-машин является наличие USB-порта, что позволяет подзаряжать от него мобильный телефон.

Бесконтактные

Самой совершенной является бесконтактная динамо-машина. Она довольно дорогая. В ней нет трущихся элементов, поэтому генератор вообще не создает никакого звука. Зачастую в ней имеется встроенный аккумулятор, что позволяет накапливать энергию наперед, и сохранять хорошее освещение даже при медленном движении в гору. Такое устройство обычно фиксируется на оси переднего колеса. Для обеспечения его работы на спицы устанавливается ободок из магнитов, который вращается изменяя параметры магнитного поля воздействующего на катушку. Обычно ободок имеет 28 магнитов с разными полюсами. Благодаря тому, что в такой динамо-машине применяется индукционная катушка, то энергия вырабатывается даже при низкой скорости, всего в 15 км в час.

Фонарик с динамо-машиной

Весьма распространенными являются ручные фонарики с встроенным генератором постоянного тока. Чтобы получить свет необходимо вращать специальную откидную рукоятку, которая для удобства прячется в корпус. Такие устройства бывают двух видов. В одних имеется встроенный батарея, а вторые передают заряд напрямую на светодиоды. При использовании первых можно предварительно подзарядить аккумулятор и пользоваться им на протяжении определенного времени без применения физического воздействия на генератор. Такие устройства дают ровный не пульсирующий свет, но стоят немного дороже и имеют больший вес. Самыми простыми являются фонарики без АКБ, у которых динамо-машина сразу передает заряд на диоды. Такие устройства светятся только при вращении рукояти. Если снизить интенсивность оборотов, то яркость уменьшается. Кроме этого наблюдается постоянная пульсация свечения, что вызывает усталость глаз.

Читайте также:  Микроволновка устройство и принцип работы

Фонарики создают много шума при работе генератора, поэтому при приближении человека, который пользуется таким устройством, об этом скорее узнают по звуку, чем свечению слабенького светодиода. Для работы динамо-машины кроме вращения рукояти может предусматриваться специальный рычаг, который необходимо нажимать и отпускать, как спортивный эспандер для кисти. Это менее эффективная конструкция, но позволяет получать свет используя одну руку.

Радиоприемник с динамо-машиной

На рынке можно встретить радио, которое оснащено рукояткой для выработки энергии. Чтобы немного послушать трансляцию радиостанции необходимо предварительно поработать динамо-машиной и зарядить тем самым встроенный аккумулятор. Стоит отметить, что это малоэффективное устройство, создающее много шума. Одновременно слушать музыку и вращать рукоятку не удастся, поскольку динамик не сможет перекричать скрежет генератора. Единственным положительным моментом радио является создание нагрузки на мышцы. Он больше выступает тренажером для рук, чем полноценным FM-приемником. По этой причине многие производители предусматривают возможность подзарядки встроенного в устройство аккумулятора от электрической сети. Иногда в корпусе может предусматриваться место для установки обыкновенных пальчиковых батареек типа АА.

Зарядное устройство для мобильных телефонов с динамо-машиной

Для любителей активного отдыха или жителей удаленных местностей, где наблюдаются проблемы с электроснабжением, полезным устройством будет зарядное устройство с встроенным генератором постоянного тока. Внешне оно представляет собой небольшую коробку с откидной рукояткой, которая при вращении вырабатывает электрический ток подходящих параметров для питания мобильного телефона или другого портативного устройства. Для этого в корпусе предусматривается USB порт, с помощью которого можно подключить зарядной кабель смартфона.

Обычно такие устройства имеют встроенную аккумуляторную батарею, что позволяет сначала накапливать заряд на нее, а уже потом передавать его на телефон, как с повербанка. Обычно динамо-машина способна вырабатывать на максимальных оборотах ручки около 600 мАч в час. Это довольно скромный показатель, поэтому рассчитывать на полноценную полную зарядку смартфоном не приходится. Потребуется непрерывная работа рукояткой часами, чтобы восполнить всю емкость батареи. Несмотря на это устройство сможет выручить в сложной ситуации, ведь для совершения срочного звонка, когда телефон полностью разряжен, достаточно потрудиться над динамо-машиной 5-6 минут.

Обычно производители монтируют на корпусе таких устройств солнечную батарею. Благодаря этому выставив динамо-зарядку на открытый участок, где на нее попадает дневной свет, можно понемногу восполнять зарядку встроенного аккумулятора без необходимости вращать ручку. К сожалению, небольшая площадь солнечной батареи выдает поток электричества примерно 40 мАч, что естественно очень мало. При решении приобрести подобное устройство необходимо учитывать, что она очень шумное, поэтому будет не лучшей альтернативой восполнить зарядку смартфона для рыбаков или охотников.

Динамо-машина (Велогенератор). Виды и особенности. Работа

Генератором электрической энергии называется устройство, преобразующее химическую, механическую или тепловую энергию в электрический ток. Таким генератором, использующимся на велосипедах для питания задних фонарей и передней фары, является динамо-машина.

Разновидности

Рассмотрим существующие виды велосипедных динамо-машин заводского исполнения.

Бутылочная

Этот вид велосипедного генератора наиболее доступный и простой. Однако его мощность не самая большая из всех видов. Приводной ролик генератора вращается за счет касания к протектору шины колеса во время движения.

Втулочная динамо-машина

Динамо-втулка по своему устройству является осевой динамо-машиной. Исполнения таких моделей могут быть различного вида. Стоимость втулочного генератора довольно высока. Установка более сложная, по сравнению с бутылочным вариантом.

При приобретении необходимо проверить число спиц и метод фиксации установочного колеса. К достоинствам втулочного генератора относится его защищенность от влаги, в отличие от бутылочного генератора, приводной ролик которого в сырую погоду проскальзывает по покрышке велосипеда. Устройство заключено внутри втулки колеса, и работа происходит от его вращения.

К недостаткам такого устройства относится то, что выключить работу втулочного генератора не получится.

Цепная

Цепной вариант велосипедного генератора встречается достаточно редко. Однако есть несколько разных исполнений этого вида. Устройство может оснащаться USB портом для зарядки мобильных гаджетов.

Недостатком такой конструкции является малый срок службы, так как при эксплуатации происходит воздействие металлической велосипедной цепи на пластиковые элементы генератора.

Бесконтактная

Это оригинальная динамо-машина с бесконтактным принципом действия. Колесо велосипеда играет роль ротора. На колесо фиксируется специальный обруч, на котором закреплены 28 магнитов. Они расположены поочередно, с разными полюсами.

Статором является индукционная катушка, в которой вырабатывается электрический ток. В эту систему включена аккумуляторная батарея для накопления энергии. По заверениям производителя для обеспечения нормального светового потока достаточно двигаться со скоростью 15 км в час.

Достоинствами этой конструкции является:
  • Отсутствие трущихся элементов.
  • Бесшумная эксплуатация.
  • Неограниченный срок эксплуатации (кроме батареи аккумуляторов).

Недостатком бесконтактной модели является малая емкость аккумуляторов. Ее хватает всего на несколько минут. Однако многие умельцы легко исправляют этот недостаток различными способами, в том числе заменой батареи на более мощную.

Другие конструкции

В настоящее время очень популярны различные интересные устройства, которые изготовлены в Китае. Иногда видишь такие устройства, которые раньше нигде не производили. Даже их принцип действия не всегда понятен, однако они работают.

Такое китайское устройство можно смело назвать велогенератором будущего. Динамо-машина из поднебесной выглядит по аналогии фантастических фильмов. Судя по внешнему виду, для ее функционирования нет необходимости в контакте с шиной колеса или цепью. Также нет никаких магнитов.

Принцип ее работы не совсем понятен. Возможно, это является технологическим секретом завода изготовителя.

Конструктивные особенности и работа

Наиболее популярной моделью динамо-машины на велосипедах является ее бутылочная конструкция, за ней идет динамо-втулка. Остальные виды используются значительно реже. Поэтому рассмотрим самые распространенные модели.

Динамо-бутылка

Динамо-машина бутылочного вида работает на боковой части передней шины велосипеда. Выполнена в виде небольшого генератора электрической энергии, и служит для работы заднего фонаря и передней фары велосипеда, а также зарядки электронных мобильных устройств.

Такой мини-генератор может монтироваться как на переднее колесо, так и на заднее. В первом случае устройство может совмещаться со встроенным фонарем. Для отключения генератора предусмотрен специальный откидной механизм, фиксирующий корпус генератора в том положении, когда нет соприкосновения с шиной колеса велосипеда.

Название этого устройства происходит от внешнего сходства формы с бутылкой. Бутылочный велогенератор имеет и другое название – боковое динамо. Приводной резиновый или металлический ролик приводится во вращение на боковой стороне шины колеса. При движении велосипеда шина придает вращательное движение ролику велогенератора, который вырабатывает электрический ток.

Достоинства
  • Отключенный привод генератора не оказывает сопротивления движению велосипеда. При включенном генераторе велосипедисту приходится прикладывать больше силы для движения. Динамо-втулка в отличие от бутылочного велогенератора, всегда оказывает сопротивление вращению колеса, хотя значение этого сопротивления незначительно. Если бутылочный велогенератор включен, но фонари и фара не подключены к питанию, то сопротивление движению велосипеда меньше.
  • Легкая и простая установка. Такое устройство легко установить на любой велосипед, в отличие от втулочного генератора, для установки которого необходима сборка всего динамо-колеса со спицами.
  • Небольшая стоимость. Такие модели обычно стоят дешевле других видов велосипедных генераторов, хотя бывают и исключения из этого правила.
Недостатки
  • Сложная настройка. Требуется тщательная настройка и регулировка соприкосновения с покрышкой колеса под определенным углом, давлением в шине, высотой. Если велосипед упадет, либо ослабнут фиксирующие винты, генератор может быть поврежден. Неправильно отрегулированное устройство генератора будет издавать много шума, создавать чрезмерное сопротивление, проскальзывать по колесу. Если винты крепления слишком ослабнут, то механизм может сдвинуться с места и попасть в спицы колеса, что приведет к поломке спиц и выходу колеса велосипеда из строя. Некоторые велогенераторы оснащены специальными петлями, предохраняющими их попадание в спицы.
  • Для переключения требуется физическое усилие. Чтобы привести в действие генератор, необходимо переместить его корпус до соприкосновения с колесом. Втулочные генераторы могут включаться автоматически или с помощью электроники. Для этого не нужно прикладывать усилия.
  • Повышенный шум. При эксплуатации слышен шум в виде жужжания, в то время как динамо-втулки не создают шума.
  • Износ шины колеса. Для эксплуатации генератора требуется соприкосновение с шиной, в результате происходит трение и износ покрышки. Если сравнить с динамо-втулкой, то там трение с покрышкой отсутствует.
  • Сопротивление движению. Бутылочная динамо-машина оказывает значительно больше сопротивление движению велосипеда, чем втулочная модель. Однако при правильной настройке сопротивление незначительное, а в отключенном виде отсутствует.
  • Проскальзывание. При сырой дождливой погоде приводной ролик бутылочного генератора будет скользить по шине колеса, что уменьшает выработку электрического тока и снижает яркость света фары и заднего фонаря. Втулочные генераторы не требуют для работы хорошего сцепления с покрышкой, и не зависят от погоды и других неблагоприятных условий.
Динамо-втулка

Втулочная конструкция велогенератора разработана в Англии, а производится различными фирмами во многих странах. Мощность такой конструкции может достигать 3 ватт при напряжении 6 вольт. Технологии их изготовления постоянно совершенствуются, размеры конструкции становятся меньше и мощнее. Современные фары для велосипеда стали излучать более эффективный свет, так как применяются светодиоды и галогенные лампы.

Динамо-втулки при работе не создают шума, но их масса больше, чем у других моделей. Трущиеся части во втулочном варианте устройства отсутствуют. Они функционируют за счет магнита, имеющего множество полюсов, и выполненного в виде кольца. Он находится в корпусе втулки и вращается вокруг неподвижного якоря с катушкой, зафиксированной на оси. Сопротивление вращению такой конструкции очень незначительное.

Читайте также:  Какие стабилизаторы считаются самыми лучшими

Динамо-втулки вырабатывают переменный ток. На малых скоростях вырабатывается больше электричества, по сравнению с бутылочной моделью, за счет низкой частоты тока. Существуют схемы выпрямителей для динамо-машины. Они выполнены по простой схеме моста из четырех диодов.

Динамо-машина втулка вырабатывает низкое напряжение, поэтому при применении кремниевых диодов потери составляют значительную величину – 1,4 вольта. С германиевыми диодами потери снижаются, и составляют всего 0,4 вольта.

Принцип работы динамо-машины

Динамо-машина вырабатывает электрический ток с помощью эффекта электромагнитной индукции. Ротор вращается в магнитном поле, в результате чего в обмотке возникает электрический ток. Концы обмотки ротора подключены к коллектору, выполненному в виде колец. Через них с помощью прижимающихся щеток электрический ток поступает в сеть.

Ток в обмотке имеет максимальное значение, если ротор находится перпендикулярно по отношению к магнитным линиям. Чем больше угол поворота обмотки, тем ток меньше. Вращение обмотки в магнитном поле изменяет направление тока за один оборот два раза. Поэтому ток называют переменным.

Подобный генератор для постоянного тока изготавливается на этом же принципе. Разница в некоторых деталях. Концы обмотки соединяют не с кольцами, а с полукольцами, которые изолированы друг от друга. При вращении обмотки щетка контактирует поочередно с каждым полукольцом. Поэтому ток, поступающий на щетки, будет иметь только одно направление и будет постоянным.

Принцип работы динамо машины

Введение

Очень часто появляется необходимость найти альтернативный источник питания вместо обычной пальчиковой батарейки. Батарейки стоят довольно дорого и заканчиваются очень быстро. А главное очень часто они нужны тогда, когда нет возможности их сразу приобрести.

Началу нашего эксперимента положила простая необходимость в электропитании напольных весов. Дело в том, что батарейки, от которых прежде работали весы, заканчивались очень быстро, требовался иной источник питания для большего удобства. Одним из вариантов стало USB, но потом пришла идея: почему бы не попробовать запитать весы динамо-машиной. Этот тип источника электрической энергии незаслуженно забыт в настоящее время.

И тут возникло множество вопросов: Как же устроена динамо-машина? На чем основывается принцип её работы? Можно ли вообще собрать динамо-машину в домашних условиях? Что для этого нужно? Будет ли такой вариант питания эффективным?

Такая задача активно стимулировала наш интерес к приобретению новых знаний об окружающем мире, физических явлениях и электрическом токе, в частности. Так проблема бытового уровня положила начало серьезного эксперимента.

Работа проведена с использованием специальной литературы, фотоматериалов, справочной информации, полученной со специализированных сайтов в сети Интернет. В результате проекта собрана информация об особенностях устройства динамо-машин, принципе их работы, отличительных особенностях разных типов прибора. На основании проведенного эксперимента сделаны выводы о возможности сборки и использовании динамо-машин дома.

Проведенный опыт был интересен и познавателен, он способствовал развитию навыков работы со схемами, желания узнавать окружающий нас мир с его физическими законами и явлениями, появлению интереса школьников к научной деятельности и глубокому изучения вопросов физики.

Цель данной работы – доказать возможность изготовления и использования динамо-машин в домашних условиях и сравнить работу прибора от динамо-машины и от обыкновенного источника питания.

Задачи исследования

Собрать динамо-машину с электрическим потенциалом в 3,5 вольт в домашних условиях.

Сравнение работы приборов от созданного генератора тока с их же работой, но от альтернативного источника питания.

Решение задач

Изучение специальной литературы и сбор необходимых компонентов для изготовления динамо-машин.

Поочередное подключение динамо-машины и компьютера к электронным весам и сравнение точности показаний весов с помощью взвешивания тел известной массы.

Этапы работы:

Подбор и изучение литературы о генераторах постоянного тока (динамо-машинах). Поиск ответа на следующие вопросы: что такое динамо-машина, история создания и области ее применения.

Подбор интересных схем и необходимого оборудования для изготовления динамо-машины.

Изготовление и проверка в работе изготовленных моделей динамо-машины.

Сравнение работы домашних приборов (напольные весы) от обычного источника питания и от динамо-машины.

Формулировка выводов практических рекомендаций о возможности применения динамо-машины в качестве источника питания бытовых приборов.

Глава 1. Динамо-машина: определение, устройство, история создания, сферы применения.

Динамо-машина, или генератор электрического тока, — это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую.

Динамо-машина состоит из катушки с проводом (ротора), вращающейся в магнитном поле, создаваемом статором, или наоборот: вращается магнит, а катушка неподвижна. Энергия вращения, согласно закону Фарадея преобразуется в переменный ток, но поскольку в XIX веке не умели практически использовать переменный ток, то они использовали щеточно-коллекторный узел для того, чтобы инвертировать изменяющуюся полярность (получить постоянный ток на выходе). В результате получался пульсирующий ток постоянной полярности.

В 1827 году Аньошем Йедликом была изобретена первая динамо-машина. Он сформулировал концепцию динамо на шесть лет раньше, чем она была озвучена Сименсом, но не запатентовал её.

В наше время термин динамо используется в основном для обозначения небольшого велосипедного генератора, питающего велосипедную фару, а также небольшого генератора, встроенного в электрические фонарики — т.н. электродинамические или самозарядные фонари, способные работать автономно без батареек или аккумуляторов и не нуждающиеся в подзарядке от стационарной электросети 220 В или в смене элементов питания, и способные работать неограниченно долгое время в полевых условиях.

В современное время динамо также используется в некоторых видах тренажёров серии для неоновой подсветки и также в гироскопических тренажёрах для кистей рук.

Глава 2. Проектирование

Первый опытный образец динамо-машины было решено сконструировать из самых доступных материалов и подручных инструментов:

Электромотор постоянного тока (от детской игрушки)

шкив диаметром 80 мм (сборный из дерева и гетинакса)

ручка из металлической пластины с отверстиями для крепления

приводящий ремень из резины

Кабель электрический с разъемом USB тип А гнездо.

Общий вид конструкции см. Рисунок.1.

Рисунок 1

В соответствие со Схемой 1, крутящий момент с ведущего вала, на котором были закреплены шкив большого диаметра и рукоятка для его вращения, через приводной ремень передавался на шкив маленького диаметра, закрепленного непосредственно на валу моторчика.

Запуск динамо-машины и замер генерируемого тока позволил сделать следующие выводы:

Да, электромотор постоянного тока можно использовать в качестве генератора тока.

Первые пуски дали неутешительный результат – отдача устройства не превысила 0.6 вольт при чрезвычайно высоких физических усилиях. Для питания современных бытовых приборов это явно недостаточно.

Повышение эффективности в такой схеме требовало замены ведущего шкива на другой гораздо большего диаметра или оснащение её сложным редуктором-мультипликатором. Таким образом, первая попытка создания рабочего образца прибора окончилась неудачей.

Так как подходящих материалов для совершенствования первого образца не нашлось, было принято решение взять за основу нового прототипа механическую часть неисправного компьютерного CD-привода, также имеющего мотор постоянного тока и редуктор для передачи момента от него до рейки на лотке для дисков.

Для создание второго образца динамо-машины было использовано:

Механизм выдвижного лотка CD дисков в сборе

Микросема диодного моста

Резистор 500 Ом

Конденсатор емкостью 10000 микро Ф

Кабель электрический с разъемом USB тип А гнездо.

Общий вид второго варианта динамо-машины показан на Рисунке 2.

В этой новой схеме сборки лоток, – наоборот, – выступил в качестве рукоятки, придающей вращение нашему генератору. Этот вариант оказался гораздо удачнее – тестер замерил более 5 вольт на клеммах моторчика.

Рисунок 2

Далее в соответствие со Схемой 2, к выводам электромотора был припаян диодный мостик. Дело в том, что возвратно-поступательные движения лотком в нашем устройстве приводят к генерации переменного тока. А диодный мост – электронное устройство, служащее для его выпрямления. Далее мы смонтировали конденсатор большой ёмкости для сглаживания бросков напряжения и светодиод для визуализации наличия напряжения на контактах разъёма подключения потребителей.

Запуск второго образца динамо-машины показал отличные результаты. При равномерном движении лотка значения вырабатываемого тока соответствовало необходимому уровню (см. Рис.3) для питания бытовых напольных весов, что позволило перейти ко второй части эксперимента – испытаниям.

Рисунок 3

Глава 3 Испытания

Проверка работы динамо-машины была проведена на бытовых напольных весах. Нам потребовались гантели (m=12.5 кг) и человек (неизвестной массы).

Для большей точности, взвешивание каждого тела производилось по 5 раз, для последующих сравнений использовались средние показания (см. Таблица 1).

Сначала подключаем весы через USB-разъём к сети (порт компьютера) и взвешиваем первое тело – гантели,

Затем переключаем весы к динамо-машине, подаем питание и производим измерения.

Повторяем операции по взвешиванию с человеком.

Первые электрогенераторы и принцип динамо

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

Рис. 1. Диск Фарадея

В предыдущих статьях данного цикла рассматривались первые электрические двигатели, созданные в начале XIX века с питанием от единственного известного источника – гальванической батареи [1 — 3]. Низкая экономическая эффективность такого электрохимического источника, препятствующая замене паровых двигателей электрическими, заставляла изобретателей искать другие, электромеханические способы генерации электроэнергии. В данной статье отражен процесс создания электрогенераторов постоянного тока, в результате которого было открыто явление самовозбуждения за счет положительной обратной связи, называемое принципом динамо.

Первый электромеханический генератор был предложен Фарадеем в 1832 г. сразу после открытия им закона электромагнитной индукции (рис. 1) [4, 5]. Диск Фарадея содержит: статор в виде подковообразного магнита – 1 и медный диск (ротор) – 2, снабженный подвижными контактами на оси и ободе.

При вращении диска в магнитном поле в нем наводится ЭДС постоянного знака, вызывающая индукционные токи, текущие по правилу правой руки радиально, т. е. между осью и ободом (в данном случае, снизу вверх). По правилу Ленца индукционные токи создают магнитный поток, препятствующий потоку магнита, т. е. направленный вдоль оси вращения диска. Это единственный известный униполярный генератор постоянного тока, применяемый для выработки больших токов до сих пор. Остальные генераторы постоянного тока являются, по существу, генераторами переменного тока с выпрямителем (коммутатором) на выходе.

Рис. 2. Генератор Пикси

Первый генератор переменного тока был построен во Франции мастером Ипполитом Пикси (Hippolyte Pixii) в том же 1832 г. [4 — 7]. За свою короткую жизнь в 27 лет Пикси создал много научных приборов, включая дилатометрический термометр и вакуумный насос. Генератор Пикси показан на рис. 2, где обозначены: 1 – статор с двумя катушками, включенными последовательно, 2 – ротор с постоянным магнитом, 3 – щеточный коммутатор (выпрямитель). Силовые линии вращающегося магнита пересекают обмотку катушек, наводя в них ЭДС, близкую к гармонической. Идея катушек и вращающегося магнита принадлежит изобретателю, приславшему письмо Фарадею, подписанное латинскими инициалами P.M. Вероятное имя изобретателя – Фредерик Мак Клинток (Frederick Mc-Clintock) – долгое время оставалось неизвестным [7]. Фарадей незамедлительно опубликовал это письмо в научном журнале. Однако это устройство генерировало переменный ток, тогда как в начале XIX века применялся только постоянный ток. Поэтому Пикси по совету Ампера снабдил его щеточным коммутатором. Генератор Пикси использовался Э. Х. Ленцем для доказательства открытого им в 1833 г. принципа обратимости электрической машины. Однако еще долго двигатели и генераторы развивались по отдельности.

Читайте также:  Установка двойного выключателя света

При создании высоковольтного дистанционного взрывателя морских мин в 1842 г. [2] Якоби предложил поместить магниты на статоре, а обмотку на роторе, что повысило компактность генератора. Генератор Якоби представлен на рис. 3 [4 — 6], где обозначены: 1 – статор с двумя постоянными магнитами, 2 – вал, 3 – якорь (ротор с обмоткой), 4 – коммутатор, 5 – мультипликатор, т. е. повышающий редуктор для увеличения скорости вращения ротора.

Рис. 3. Генератор Якоби

Аналогичную конструктивную схему имел генератор, предложенный английским инженером Фредериком Холмсом (Frederick Holmes) для питания запатентованной им дуговой лампы. Для серийного производства генераторов в 1856 г. была создана компания «Альянс» [5, 6]. Вид генератора представлен на рис. 4, где: 1 – статор с постоянными магнитами; 2 – ротор с обмоткой (якорь); 3 – центробежный регулятор, 4 – механизм сдвига щеток.

В нем использовался центробежный регулятор Уатта для автоматического поддержания выходного напряжения путем сдвига щеток с нейтрали при изменении нагрузочного тока, что обеспечивало компенсацию реакции якоря. Генератор имел 50 постоянных магнитов, развивал мощность 10 л.с. при весе до 4 тонн. Всего было выпущено более 100 генераторов «Альянс», применявшихся, помимо дуговых прожекторов маяков, и в гальванопластике.

Рис. 4. Генератор «Альянс»

В эксплуатации у машин с постоянными магнитами обнаружился неприятный недостаток снижения выходного напряжения из-за постепенного размагничивания магнитов от вибрации и старения. Другим недостатком возбуждения от постоянных магнитов была невозможность регулирования их магнитного потока для стабилизации генерируемого напряжения. Для борьбы с этими недостатками предлагалось применить электромагнитное возбуждение, обеспечивающее к тому же, как отмечалось в статье [3], большую компактность. Так, преуспевающий английский изобретатель Генри Уайльд (Henry Wilde) получил в 1864 г. патент на генератор с отдельным маломощным возбудителем на постоянном магните, установленном на общем валу с генератором [4 — 6]. Уайльд не имел университетского образования, начинал свою карьеру учеником механика, но ему удалось наладить производство своих генераторов для гальванопластики. Тем не менее, становилось ясно, что наличие постоянных магнитов в генераторах – серьезный тормоз развития телеграфии и электрического освещения.

Кардинальное решение проблемы появилось после открытия возможности самовозбуждения генераторов, названного Сименсом динамоэлектрическим принципом, или принципом динамо [4 — 7]. Идея самовозбуждения состоит в том, что – как показано на рис. 5 – начальный поток возбуждения при пуске машины создается остаточной намагниченностью магнитопровода, где напряжение генератора снимается с обмотки якоря Я, а возбуждение машины выполняется либо обмоткой ОВ1, включенной последовательно с нагрузкой Rн, либо обмоткой ОВ2, включенной параллельно якорю через регулировочный резистор R (так называемое шунтовое возбуждение). Далее поток возбуждения увеличивается за счет положительной обратной связи от генерируемого тока.

Рис. 5. Схема генератора с самовозбуждением

Одним из первых на возможность самовозбуждения генератора указал в патенте 1854 г. датский инженер и организатор железнодорожного сообщения Сорен Хиорт (S?ren Hjorth). Однако, опасаясь слабости остаточной намагниченности, он дополнил генератор постоянными магнитами. Этот генератор Хиорта так и не был реализован. Независимо от Хиорта идею самовозбуждения высказал в 1856 г. профессор Будапештского университета Аньеш Йедлик (?nyos Jedlik). Он также предложил один из первых электродвигателей, описанный в статье [1]. Однако Йедлик своих изобретений не патентовал и сведения о них публиковал весьма скупо, поэтому его новаторские предложения остались незамеченными.

Практически идея самовозбуждения была реализована лишь через десять лет в одно и то же время несколькими изобретателями. В заявке на патент в декабре 1866 г. инженер английской телеграфной компании, ученик Фарадея Самюэль Варлей (Samuel Alfred Varley) предложил схему генератора, аналогичного генератору Якоби, в котором, однако, обмотка возбуждения заменяла постоянные магниты. Схема генератора показана на рис. 6, где: 1 – электромагниты возбуждения, 2 – якорь, 3 – коммутатор, 4 – добавочный регулировочный резистор. Перед пуском сердечники возбуждения намагничивались постоянным током.

Рис. 6. Генератор Варлея

Через месяц, в январе 1867 г., в Берлинской Академии наук был представлен доклад известного немецкого изобретателя и промышленника Вернера Сименса (Werner Siemens) с подробным описанием генератора с самовозбуждением, названного им динамо-машиной. Перед пуском генератор включался как двигатель для намагничивания возбуждения. Впоследствии Сименс наладил широкий промышленный выпуск таких генераторов в Германии.

В феврале того же 1867-го г. известный английский физик Чарльз Уитстон (Charles Wheatstone) запатентовал и продемонстрировал генератор с шунтовым возбуждением (рис. 5). Владелец мастерской музыкальных инструментов, перенявший дело от своего отца, впоследствии профессор Королевского колледжа King’s College в Лондоне, Уитстон известен также своими изобретениями метода измерения сопротивления (мост Уитстона), однофазного синхронного электродвигателя, музыкального инструмента концертино, стереоскопа, хроноскопа (электрического секундомера) и усовершенствованного вида телеграфа Шиллинга.

В печати возникла дискуссия о приоритете данного технического решения, на который претендовали также Уайльд и Хиорт. Следует отметить, что существует три вида приоритета: научный, патентный и промышленный. Научный приоритет принадлежит ученому, впервые опубликовавшему или публично продемонстрировавшему какое-либо устройство, эффект или теорию. Промышленным приоритетом владеет лицо или компания, впервые наладившие производство изделия и его широкое внедрение. Например, при открытии радио научный приоритет принадлежит Попову, а патентный и промышленный – Маркони. Относительно генератора с самовозбуждением следует признать патентный приоритет за Варлеем, научный – за Йедликом и Сименсом, а промышленный – за Сименсом. Уитстону же принадлежит приоритет в частном, хотя и весьма важном, техническом решении – шунтовом возбуждении.

Дальнейшее улучшение характеристик динамо-машины было связано с изменением конструкции ее якоря путем применения в 1867 г. бельгийским электротехником Зиновием Граммом (Zenobe Gramme) кольцевого якоря, а затем внедрением барабанной намотки, предложенной в 1872 г. Гефнером Альтенеком (Hefner Alteneck), ведущим конструктором компании Сименс-Гальске [5 — 7]. После этого электродвигатели и генераторы практически приняли современный вид. Однако к концу XIX века в связи с широким внедрением систем переменного тока основная доля электроэнергии на гидро- и тепловых электростанциях вырабатывалась уже генераторами переменного тока.

Рис. 7. Модель геодинамо

Что касается самого принципа динамо, то о нем снова вспомнили уже в ХХ веке для объяснения причин земного магнетизма, которое Эйнштейн в 1905 г. назвал одной из пяти главных загадок физики того времени [8, 9]. До сих пор окончательного ответа, подтвержденного компьютерным моделированием или физическими экспериментами, не получено, но наиболее популярной является теория, называемая гидромагнитным динамо (геодинамо). Еще со времен Уильяма Гильберта (конец XVI века) установлено, что Земля – это гигантский магнит, силовые линии которого направлены от южного полюса к северному. Согласно уравнениям Максвелла, магнитные потоки могут создаваться только токами, поэтому естественно было предположить, что Земля – это электромагнит, токи которого текут в плоскостях, параллельных экватору, а сердечником служит твердое ферромагнитное ядро Земли, показанное на рис. 7, с предполагаемым вертикальным расположением оси вращения Земли. Это железоникелевое ядро (1) диаметром около 1200 км окружено жидкой оболочкой (2) из тех же металлов толщиной 2300 км, за которым следуют горные породы мантии и коры Земли.

Если предположить, что вследствие вращения Земли (3) в жидкой оболочке ядра образуются концентрические течения в плоскостях, параллельных экватору (на рисунке не показаны), то в них могут индуктироваться токи за счет пересечения силовых линий (4) магнитным потоком от твердого ядра – как в генераторе Фарадея. Однако твердое ядро принципиально не может быть намагниченным, поскольку его температура, вызванная термоядерными реакциями, выше 5000 о С (как на поверхности Солнца), а все ферромагнитные материалы теряют свои магнитные свойства выше точки Кюри (около 750 о С). Кроме того, ученые не могли предложить разумного объяснения причин образования таких концентрических течений. Поэтому в настоящее время принята более сложная модель, называемая конвективным геодинамо.

Температура поверхности жидкого ядра на границе с мантией (5) примерно на 600 о С ниже температуры твердого ядра, что вызывает радиальные конвективные потоки жидкости (6), которые под действием кариолисовых сил, вызванных вращением Земли, закручиваются в вихри (7), ось вращения которых совпадает с осью вращения Земли. Далее в этих жидких вихрях, аналогично диску Фарадея, индуктируются токи, создающие магнитные потоки (4) вдоль оси вращения Земли.

Более сложным является вопрос о первоначальном образовании магнитного поля Земли. В 1919 г. ирландский физик и математик Джозеф Лармор (Joseph Larmor), выпускник Кембриджского университета, один из создателей теории электрона и основателей релятивистской теории, предложил для его решения идею самовозбуждения, аналогичного процессу в динамо-машине. Необходимая первоначальная намагниченность мантии Земли могла быть вызвана магнитным полем Солнца, направленным вдоль оси вращения. Затем за счет механизма положительной обратной связи в вихрях жидкости постепенно нарастали токи, намагничивающие мантию, пока локальный нагрев жидкого ядра за счет омических потерь не начал разрушать конвективные потоки и магнитное поле Земли не приняло устойчивый современный уровень [8, 9].

Читайте далее:
Ссылка на основную публикацию
×
×
Adblock
detector