Реактор электрический принцип работы - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Реактор электрический принцип работы

Как устроены и работают токоограничивающие и дугогасящие реакторы в энергетике

Современные автоматические выключатели ликвидируют токи коротких замыканий с минимально возможной выдержкой времени. Но, они не могут противостоять действию электродинамических сил, которые развиваются в первоначальный момент аварии. Для ликвидации их ударного проявления используются другие технические решения, основанные на работе реакторов.

Термин «Реактор» используется для обозначения устройств, работающих за счет проявления сил различных реакций, когда создается ответное воздействие на протекание какого-то определенного процесса, например, биологического, химического, электрического. механического…

Если совершается какое-то действие (обозначаемое корнем слова «акция»), то техническое устройство контролирует этот процесс и осуществляет противодействие его развитию (определяется предлогом «ре»). Название «Реактор» обозначается термином, состоящим из этого корня и предлога. А его окончание завершает определение технического устройства.

Наиболее широко используются сухие реакторы в сетях 6 и 10 кВ. Они выполняются в виде обмотки из изолированного провода, закрепленной на бетонных колоннах. Монтируются с вертикальным, горизонтальным или ступенчатым расположением фаз, в отдельных камерах распределительного устройства. В сетях более высоких напряжений применяются реакторы с масляной изоляцией, с каркасом стержневой или тороидальной формы из изоляционного материала и стальным баком.

Реакторы различают: по исполнению — одинарные и сдвоенные, по месту включения — секционные и линейные, по характеристикам — с линейной или нелинейной характеристикой, управляемые и неуправляемые. Сухие бетонные реакторы относятся к неуправляемым реакторам с линейной характеристикой.

Виды реакторов в энергетике

В высоковольтных электрических системах реакторы работают на принципе контроля и ограничения аварийных токов, стихийно возникающих на оборудовании схемы.

По назначению конструкции они подразделяются на два вида:

1. уменьшающие величины токов коротких замыканий — токоограничивающие;

2. снижающих возникающую электрическую дугу — дугогасящие.

Первый вид электротехнических аппаратов создается для устранения действия ударного тока, образуемого при возникновении короткого замыкания.

Второй — дугогасящие реакторы увеличивают индуктивное сопротивление, противодействующее развитию дуги при аварийной ситуации, связанной с образованием однофазного замыкания на контур земли в сетях, использующих глухоизолированную нейтраль.

Оба вида этих электротехнических устройств при номинальном режиме работы оборудования вносят небольшую погрешность в выходные характеристики системы, но она лежит в пределах рабочих нормативов, вполне допустима.

Что такое ударный ток короткого замыкания

При номинальном режиме высоковольтная энергия питания расходуется на преодоление полного сопротивления подключенной электрической схемы, состоящего из активной и реактивной нагрузки с индуктивными и емкостными связями. При этом создается рабочий ток, сбалансированный приложенной мощностью, напряжением, полным сопротивлением цепи.

Во время короткого замыкания происходит шунтирование огромной мощности источника случайным подключением нагрузки с маленьким активным сопротивлением, характерным для металлов. В ней отсутствует реактивная составляющая.

Это КЗ устраняет созданное равновесие в рабочей схеме, формирует новые виды токов. При этом переход источника напряжения на режим короткого замыкания происходит не мгновенно, а слегка растянут по времени. Такой кратковременный период называют переходным. При его протекании токи нагрузки изменяют форму и величину от значения гармоничной синусоиды номинального режима до характеристик установившегося подключения к «металлическому замыканию».

В ходе протекания переходных процессов полный ток от КЗ представляет собой вид сложной формы, которую для упрощения расчетов и анализа разделяют минимум на две составляющие:

1. вынужденную периодическую;

2. свободную апериодическую.

Первая часть повторяет форму питающего напряжения, а вторая возникает скачком и постепенно убывает по величине. Она формируется за счет емкостной нагрузки номинального режима, который рассматривается как холостой ход для последующего короткого замыкания.

Обе составляющие, складываясь вместе, создают ток, изменяющийся во времени сложным видом. Его необходимо учитывать при создании защит для принятия действенных мер.

За основу расчета выбирается величина с максимальным мгновенным значением апериодической составляющей. Его и называют ударным током.

Как работает токоограничивающий реактор

Основу конструкции составляет обмотка катушки, обладающей индуктивным сопротивлением, включенным в разрыв основной цепи питания. Ее параметры подбирают таким образом, чтобы при нормальных условиях эксплуатации падение напряжения на ней не превышало четырех процентов от общей величины.

При возникновении аварийной ситуации в защищаемой схеме эта индуктивность гасит большую часть приложенного высоковольтного напряжения и таким образом ограничивает действие ударного тока.

Токоограничивающий реактор рассчитывают по величине максимального тока аварии Im, которому он может противостоять по выражению:

Im= (2,54 I н/Хр)х100%

В формуле Iн обозначает значение номинального тока, а Xр — величину реактивного сопротивления обмотки.

Приведенная закономерность наглядно показывает, что увеличение индуктивности катушки ведет к уменьшению ударного тока.

Реактивные свойства обмоток обычно повышают подключением магнитопровода из стальных пластин. В конструкциях подобных реакторов при протекании больших токов по виткам происходит насыщение материала сердечника, что ведет к потере его токоограничивающих свойств. Поэтому от таких конструкций в большинстве случаев отказываются.

Токоограничивающие реакторы, как правило, изготавливают без использования стальных сердечников. Из-за необходимости достижения требуемой индуктивности они обладают повышенными габаритами и весом.

Конструкции токоограничивающих реакторов

По внутреннему исполнению они бывают:

Реакторы из бетонных блоков

Такие конструкции эксплуатируются довольно долгое время в сетях с напряжением до 35 кВ. Их обмотку делают из эластичных проводов, демпфирующих динамические и температурные нагрузки несколькими параллельными цепочками, равномерно распределяющими токи. Этим способом разгружают механическое воздействие на стационарную бетонную конструкцию.

Витки обмоток подобных реакторов выполнены многожильными проводами круглого сечения с изоляцией. Их заливают специальным сортом высокопрочного бетона, смонтированного в вертикальные колонки. При необходимости дополнения в конструкцию металлических частей используют исключительно немагнитные материалы.

Способ включения фазных катушек выбирают таким, что бы магнитные поля от них направлялись встречно. Этим приемом ослабляют динамические усилия при ударных токах КЗ.

Открытое расположение обмоток в пространстве позволяет обеспечивать хорошие условия для естественного охлаждения атмосферным воздухом. Когда тепловые нагрузки при номинальном режиме или коротких замыканиях способны превысить допустимые пределы нагрева обмоток, то применяют принудительный обдув вентиляторами.

При эксплуатации следует учитывать, что при сырой погоде бетон накапливает влажность из воздуха.

Подобные устройства до сих пор массово работают в высоковольтных сетях энергетики, успешно справляются с аварийными ситуациями, но считаются уже морально устаревшими.

Реакторы сухого типа

Они стали появляться благодаря разработке новых изоляционных материалов, основанных на кремнийорганической структуре. Она позволяет создавать изделия, успешно работающие на электрооборудовании до 220 кВ включительно.

Катушка обмотки наматывается прямоугольным многожильным кабелем повышенной прочности и покрывается слоем кремнийорганического лака. Дополнительные эксплуатационные преимущества обеспечивает покрытие кремнийорганической силиконовой изоляцией.

В результате этих доработок сухие токоограничивающие реакторы по сравнению с бетонными аналогами обладают:

меньшими габаритами и весом;

повышенной механической прочностью;

бо́льшим ресурсом работы.

У них медная обмотка проводников изолируется пропитанной кабельной бумагой и монтируется на изоляционных цилиндрах, помещенных в емкость с маслом либо другим жидким диэлектриком, одновременно выполняющим функцию отвода тепла.

Чтобы исключить нагрев металлического корпуса емкости от протекающего по виткам обмотки переменного поля промышленной частоты в подобную конструкцию включают магнитные шунты или электромагнитные экраны.

Магнитный шунт создают из магнитомягких листов стали. размещенных внутри масляной емкости около ее стенок. Образованный таким методом внутренний магнитопровод замыкает на себя магнитный поток, создаваемый обмоткой.

Электромагнитные экраны изготавливают в виде алюминиевых либо медных короткозамкнутых витков, смонтированных у стенок бака. В них индуцируется встречное электромагнитное поле, снижающее действие основного.

Реакторы с броней

Создаются с сердечником. Учитывая возможность насыщения магнитопровода, такие изделия требуют точного расчета и тщательного анализа условий эксплуатации.

Броневые сердечники из электротехнических сортов стали позволяют снижать габариты и вес подобных конструкций реакторов, а заодно и стоимость.

Но при их использовании требуется обязательно учитывать то обстоятельство, чтобы ударный ток не превышал максимального возможного значения для этого типа устройств.

Защищают кабельную ЛЭП по другому принципу, чем их токоограничивающие аналоги.

Об опасности однофазных замыканий на контур земли в схеме с изолированной нейтралью

Энергетические сети с рабочим напряжением 6÷35 кВ создаются для работы на линиях электропередач с нейтралью, изолированной от земли. В этом случае между всеми проводниками образуется емкостное сопротивление, а они сами работают так же, как обкладки конденсатора, то есть накапливают заряды.

Читайте также:  Очиститель старой краски с металла

При нарушении изоляции любой из фаз на контур земли создается замкнутая электрическая цепочка, через которую начинает стекать только емкостной ток. Он не создает короткое замыкание. Поэтому подобную неисправность допускается действующими документами устранять не мгновенно, а с выдержкой времени до двух часов. Она необходима оперативному персоналу как резерв на изменение схемы питания потребителей поврежденной линии без перерыва их электроснабжения.

С этой целью релейные защиты ЛЭП настраиваются в работу на сигнал, а не на отключение питания. Однако в такой ситуации проявляется двойная опасность:

1. попадания человека под действие шагового напряжения, оказавшегося в случайном месте возникновения неисправности;

2. возникновения электрической дуги, когда емкостной ток станет превышать величину в 20 ампер.

Горение дуги разрушает изоляцию проводов и кабелей, переводит однофазное замыкание в двух- или трехфазное КЗ со всеми негативными последствиями. Ее действие ограничивают защитными устройствами.

Назначение дугогасящих реакторов

Обмотка катушки L включается между нейтралью генератора и контуром земли. Она обладает индуктивным сопротивлением, которое можно регулировать посредством переключения числа витков. Измерительный трансформатор ТА позволяет контролировать проходящий ток для принятия действенных мер.

Такой способ подключения обмотки катушки позволяет создавать последовательную цепочку, состоящую из емкости и индуктивности, к которой приложено напряжение источника фазы с поврежденной изоляцией.

Емкостной и индуктивный токи находятся в противофазе, сдвинуты на общий угол 180 градусов. Действие емкостного тока ограничивается индуктивным, направленным встречно. В итоге суммарная величина, проходящая через поврежденную изоляцию, значительно уменьшается.

Дугогасящие реакторы могут создаваться под индивидуальные условия эксплуатации, не требующие специальных настроек для линий ограниченной длины или изготавливаться с возможностью регулировки индуктивного сопротивления катушки:

В первом случае изменение индуктивности осуществляется за счет переключения числа обмоток, подключенных к отпайкам.

Плавную регулировку выполняют:

плунжерные конструкции, регулирующие воздушный зазор магнитопровода;

реакторы с подмагничиванием постоянным током, использующие принципы магнитных усилителей.

Дугогасящие реакторы постоянной индуктивности создаются без систем управления.

Для регулирования индуктивности используются конструкции с:

ручным переключением числа работающих витков. Этот процесс не только трудоемкий, но и требует снятия напряжения с реактора;

приводом, работающим автоматически под нагрузкой сети;

измерителем емкости, позволяющим автоматически подстраивать индуктивность под результат замера за счет плавного регулирования тока.

Современные конструкции дугогасящих реакторов в управлении используют микропроцессорные технологии, облегчающие возможности эксплуатации предоставлением обслуживающему персоналу расширенной информации по статистике замыканий, поиску повреждений и другим полезным функциям.

Реакторы. Принцип действия, конструкции, область применения

Реакторы служат для ограничения токов КЗ в мощных электроустановках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реакторами.

Основная область применения реакторов — электрические сети напряжением 6¾10 кв. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Схемы реактированной линии и диаграммы, характеризующие распределения напряжений в нормальном режиме работы, приведены на рис. 3.43.

Рис. 3.43. Нормальный режим работы цепи с реактором: а— схема цепи; б — диаграмма напряжений: в — векторная диаграмма

На векторной диаграмме изображены: U1— фазное напряжение перед реактором, Uр — фазное напряжение после реактора и I — ток, проходящий по цепи. Угол φ соответствует сдвигу фаз между напряжением после реактора и током. Угол ψ между векторами U1 и U2 представляет собой дополнительный сдвиг фаз, вызванный индуктивным сопротивлением реактора. Если не учитывать активное сопротивление реактора, отрезок АС представляет собой падение напряжения в индуктивном сопротивлении реактора.

Реактор (рис. 3.44) представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Рис. 3.44. Фаза реактора серии РБ: 1 – обмотка реактора, 2 – бетонные колонны, 3 – опорные изоляторы

Для мощных и ответственных линий может применяться индивидуальное реактирование.

В электроустановках находят широкое применение сдвоенные бетонные реакторы с алюминиевой обмоткой для внутренней и наружной установки типа РБС.

Реакторы выбирают по номинальным напряжению, току и индуктивному сопротивлению.

Номинальное напряжение выбирают в соответствии с номинальным напряжением установки. При этом предполагается, что реакторы должны длительно выдерживать максимальные рабочие напряжения, которые могут иметь место в процессе эксплуатации. Допускается использование реакторов в электроустановках с номинальным напряжением, меньшим номинального напряжения реакторов.

Номинальный ток реактора (ветви сдвоенного реактора) не должен быть меньше максимального длительного тока нагрузки цепи, в которую он включен:

Для шинных (секционных) реакторов номинальный ток подбирается в зависимости от схемы их включения.

Индуктивное сопротивление реактора определяют, исходя из условий ограничения тока КЗ до заданного уровня. В большинстве случаев уровень ограничения тока КЗ определяется по коммутационной способности выключателей, намечаемых к установке или установленных в данной точке сети.

Как правило, первоначально известно начальное значение периоди­ческого тока КЗ Iп.о., котороеспомощью реактора необходимо уменьшить до требуемого уровня.

Рассмотрим порядок определения сопротивления индивидуального реактора. Требуется ограничить ток КЗ так, чтобы можно было в данной цепи установить выключатель с номинальным током отключения Iном.отк. (действующее значение периодической составляющей тока отключения).

По значению Iном.отк определяется начальное значение периодической составляющей тока КЗ, при котором обеспечивается коммутационная способность выключателя. Для упрощения обычно принимают Iп.о.треб = Iном.отк.

Результирующее сопротивление, Ом, цепи КЗ до установки реактора можно определить по выражению

.

Требуемое сопротивление цепи КЗ для обеспечения Iп.о.треб.

Разность полученных значений сопротивлений даст требуемое сопротивление реактора

.

Далее по каталожным и справочным материалам выбирают тип реактора с большим ближайшим индуктивным сопротивлением.

Сопротивление секционного реактора выбирается из условий наиболее
эффективного ограничения токов КЗ при замыкании на одной секции. Обычно оно принимается таким, что падение напряжения на реакторе при протекании по нему номинального тока достигает 0,08¾0,12 номинального напряжения, т. е.

.

В нормальных же условиях длительной работы ток и потери напряжения в секционных реакторах значительно ниже.

Фактическое значение тока при КЗ за реактором определяется следующим образом. Вычисляется значение результирующего сопротивления цепи КЗ с учетом реактора

,

а затем определяется начальное значение периодической составляющей тока КЗ:

Аналогично выбирается сопротивление групповых и сдвоенных реакторов. В последнем случае определяют сопротивление ветви сдвоенного реактора Xр = Xв.

Выбранный реактор следует проверить на электродинамическую и тер­мическую стойкость при протекании через него тока КЗ.

Электродинамическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Термическая стойкость реактора гарантируется при соблюдении следующего условия:

Для установки в нейтрали силовых трансформаторов и присоединениях отходящих линий на напряжение 6¾35кВ рекомендуются к установке сухие токоограничивающие реакторы с полимерной изоляцией.

Вопросы для самопроверки по разделу 3:

1. Автоматические выключатели. Назначение, устройство, выбор.

2. Виды и общие требования к электрическим аппаратам до 1000 В.

3. Магнитные пускатели. Назначение, устройство, выбор.

4. Контакторы. Назначение, устройство, выбор.

5. Рубильники. Назначение, устройство, выбор.

6. Плавкие предохранители. Назначение, устройство, выбор.

7. Электрические контакты шин и аппаратов. Классификация, сопротивление контакта.

8. Выбор шин и кабелей.

9. Токоограничивающее действие сдвоенных реакторов.

10. Приводы выключателей и разъединителей.

11. Ограничение токов КЗ реакторами. Принцип действия, конструкции, маркировка, способы включения в схемах Р.У.

12. Автоматические выключатели. Назначение, устройство, выбор.

13. Виды и общие требования к электрическим аппаратам более 1000 В.

14. Магнитные пускатели. Назначение, устройство, выбор.

15. Контакторы. Назначение, устройство, выбор.

16. Рубильники. Назначение, устройство, выбор.

17. Плавкие предохранители. Назначение, устройство, выбор.

18. Измерительные трансформаторы, общие сведения.

19. Измерительные трансформаторы тока, векторные диаграммы, классы точности, погрешности.

20. Измерительные трансформаторы напряжения, векторные диаграммы, классы точности, погрешности.

21. Марки и конструкции трансформаторов тока.

22. Марки и конструкции трансформаторов напряжения.

23. Масляные выключатели. Область применения, устройство, условия выбора.

24. Воздушные выключатели. Область применения, устройство, условия выбора.

25. Вакуумные выключатели. Область применения, устройство, условия выбора.

26. Электромагнитные выключатели. Область применения, устройство, условия выбора.

27. Элегазовые выключатели. Область применения, устройство, условия выбора.

28. Разъединители. Область применения, устройство, условия выбора.

29. Отделители и короткозамыкатели. Область применения, устройство, условия выбора.

30. Изоляторы, конструкции и выбор.

31. Жесткие шины. Конструкции.

32. Гибкие шины. Конструкции.

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:  Сечение проводов по мощности таблица 12в

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9003 – | 7656 – или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Токоограничивающий реактор

Здравствуйте! Токоограничивающий реактор предназначен для ограничения величины токов, возникающих при коротких замыканиях на линиях или шинах станций и подстанций. По сути, это катушка индуктивности, подчиняющаяся закону коммутации, который гласит, что ток в цепи с индуктивностью не может изменяться скачкообразно.

Характеристики

Реактор характеризуется следующими величинами:

• Индуктивное сопротивление, выраженное в процентах.

Увеличение активного сопротивления устройства, приводит к большему ограничению, протекающего через него, тока короткого замыкания.

Индуктивное сопротивление аппарата выражается в процентном соотношении и показывает, какая часть от номинального напряжения, при протекании заданного тока, рассеивается на индуктивном сопротивлении.

Применение

Токоограничивающие реакторы устанавливаются последовательно нагрузке, на отходящих линиях электростанций и подстанций, на участках, где требуется уменьшить величину тока короткого замыкания. Ограничение величины протекающего тока, позволяет применять менее сложную аппаратуру релейной защиты и автоматики, а также высоковольтные выключатели, с меньшим максимальным током отключения. Все это позволяет значительно уменьшить стоимость распределительных устройств.

Устройство и принцип действия

Конструктивно реактор представляет собой катушку индуктивности, обладающую большим индуктивным и малым активным сопротивлением. Катушка состоит и медного или алюминиевого провода, с сечением, допускающим протекание номинального тока электроустановки, намотанного на опору из изоляционного материала.

При нормальной работе сети, падение напряжения на обмотке реактора составляет 3 – 4%. В момент возникновения в электрической системе токов короткого замыкания, падение напряжения на нем многократно возрастает, что позволяет ограничить величину тока, до приемлемых величин.

В аппаратах ограничения тока не применяются стальные сердечники, так как при возникновении короткого замыкания на линии, происходит насыщение стали, и реактивное сопротивление катушки резко уменьшается, вследствие чего она теряет свои токоограничивающие свойства.

При проектировании схем следует помнить, что если на линиях электропередач применяется система высокочастотной связи или высокочастотной защиты от повреждений, установленный реактор может гасить частоты технологии PLC.

Виды реакторов

По типу установки реакторы делятся на:

• Устройства наружной установки. Предназначены для эксплуатации под открытым небом, без дополнительной защиты от непогоды.

• Аппараты внутреннего исполнения. Применяются только в закрытых помещениях (ЗРУ), обеспечивающих защиту от внешней среды.

По классу напряжения:

• Среднего напряжения (3 – 35 кВ).

• Высокого напряжения (110 – 500 кВ).

• Межсекционные. Предназначены для создания электрической связи между секциями распределительного устройства, включаются они последовательно с межсекционным выключателем. В момент возникновения короткого замыкания на одной из секций, токоограничивающий аппарат предотвратит бросок тока на неповрежденной секции и предотвратит ложное срабатывание ее защит.

• Фидерные. Устанавливаются на отходящие фидерные линии и предназначены для дугогашения при коротком замыкании на линии. Дугогасительный реактора ограничит ток и не даст развиться дуге, предотвратив повреждение оборудования. Применяются в сетях с глухозаземленной нейтралью.

• Фидерные групповые. Имеют то же назначение и принцип действия, что и фидерные реакторы, но предназначены для установки на группу отходящих присоединений.

Броневые. Для экономии дорогостоящих материалов, при условии точного расчета токов короткого замыкания, способных возникнуть в электрической сети, допускается применять токоограничивающие реакторы с сердечником из броневой конструкции из электротехнической стали. Данные устройства обладают меньшей массой, нежели их аналоги, изготовленные по другим технологиям, размерами и стоимостью. К недостаткам броневого реактора можно отнести возможность потери им токоограничивающих свойств, при прохождении в сети токов короткого замыкании, выше, чем токи, на которые он рассчитан.

Бетонные. Широко распространены на подстанциях до 35 кВ. Имеют малую стоимость и неприхотливы к условиям эксплуатации. Аппаратам такого рода требуется минимальное техническое обслуживание (осмотр и протяжка соединений), так как они изготавливаются из витков многожильного, изолированного провода, залитого в бетонное основание. При возникновении токов короткого замыкания, все детали устройства испытывают большие механические нагрузки, поэтому бетон для изготовления основания применяется особой прочности (вибрационный замес). При прохождении больших токов, бетонные реакторы могут быть оснащены принудительным охлаждением, в таком случае в маркировку аппарата добавляется буква «Д» — дутье. Катушки реактора располагаются встречно, для уменьшения суммарных магнитных потоков, возникающих при больших токах короткого замыкания.

Масляные. Применяются в высоковольтных сетях (свыше 35 кВ). На каждую фазу приходится свой герметичный бак с маслом, в котором уложены витки катушки индуктивности. Масло является изолятором и одновременно охлаждает катушку, предотвращая ее перегрев и разрушение реактора. Стенки бака предохраняются от нагрева при помощи специальных магнитных шунтов и электромагнитных экранов.

Магнитный шунт. Представляет собой пакеты листовой, электротехнической стали, установленные внутри масляного бака реактора. Шунт обладает очень малым магнитным сопротивлением, благодаря чему магнитный поток катушки реактора замыкается через него, а не через стенки бака.

Электромагнитный экран. Обмотки реактора обкладываются короткозамкнутыми витками из медного или алюминиевого провода, возникающее в этих витках электромагнитное поле, противодействует полю, наводимому катушками устройства. В результате чего, сила действия основного поля значительно ослабевает или исчезает вовсе.

Во избежание разрыва бака, при перегреве реактора и в результате повышенном газообразовании масла, все аппараты, рассчитанные на напряжение 500 кВ и выше, оснащаются специальными устройствами газовой защиты (газовыми реле). Которые при закипании масла выдают команду на отключение реактора, либо на сигнал обслуживающему персоналу.

Сдвоенные. Используются для уменьшения падения напряжения на линиях большой протяженностью. Конструктивно представляют две обмотки на каждой фазе, включаемые встречно, в результате чего индуктивность реактора стремиться к нулю, а падение напряжение уменьшается. При возникновении токов короткого замыкания, магнитное поле катушки резко возрастает и реактора работает в обычном режиме токоограничения. К недостаткам устройства можно отнести его большие массу и габариты, а также значительную стоимость (примерно в два раза, по сравнению с реактором другого исполнения).

Сухие. Являются самой новой разработкой, внедряемой в промышленность. Они широко применяются в сетях с напряжением до 220 кВ. Сухой реактор представляет собой катушку индуктивности из кабелей, намотанную на диэлектрическом каркасе. Аппараты сухого исполнения имеют малую стоимость и хорошие показатели, как по ограничению токов короткого замыкания, так и по охлаждению обмоток.

Сглаживающие реакторы. Этот электрический аппарат следует отметить отдельно. Сглаживающие реакторы применяются для уменьшения пульсаций выпрямленного тока в цепях питания мощных электродвигателях электровозов и электропоездов. Устройство представляет собой катушку со стальным сердечником, обладающую малым активным сопротивлением, в результате чего, реактор не оказывает влияния на постоянную составляющую выпрямленного тока. Однако переменный ток, присутствующий в цепи, рассеивается на индуктивном сопротивлении катушки.

Заключение

В статье рассказано о назначении и видах реакторов, применяемых для ограничения тока в цепи. Самым важным в работе этих устройства является снижение тока короткого замыкания, который должен разорвать высоковольтный выключатель и уменьшение возникающей дуги (для дугогасящих реакторов) в сетях с глухозаземленной нейтралью. Дуга не возникает, так как для ее создания не хватит тока в цепи, в результате чего, оборудование останется неповрежденным, и будет снижен риск для жизни и здоровья обслуживающего персонала.

Однако следует помнить, что применение токоограничивающего реактора, требует проведения более сложных расчетов для устройств релейной защиты и автоматики, а также то, что несоответствие параметров аппарата, значениям сети, не обеспечит необходимого снижения тока.

Реактор электрический принцип работы

При коротком замыкании ток в цепи значительно возрастает по сравнению с током нормального режима. В высоковольтных сетях токи короткого замыкания могут достигать таких величин, что подобрать установки, которые смогли бы выдержать электродинамические силы, возникающие вследствие протекания этих токов, не представляется возможным. Для ограничения ударного тока короткого замыкания применяют токоограничивающие реакторы.

Устройство и принцип действия

Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3-4 %, что вполне допустимо. В случае короткого замыкания бо́льшая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

Читайте также:  Щелевые колпачки для фильтров химводоочистки

где IH — номинальный ток сети, Xp — реактивное сопротивление реактора. Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы.

Виды реакторов

Бетонные реакторы

Получили распространение на внутренней установке и на напряжения до 35 кВ. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. Бетон выпускается с высокими механическими свойствами. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании.

Масляные реакторы

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом. Масло служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны или магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках возникает встречное электромагнитное поле, которое компенсирует основное поле.

Магнитный шунт – это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшим сопротивлением стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500кВ и выше должны быть оборудованы газовой защитой.

Литература

  • Родштейн Л. А. «Электрические аппараты: Учебник для техникумов» — 3-е изд., Л.:Энергоиздат. Ленингр. отд-ние, 1981.

Wikimedia Foundation . 2010 .

Смотреть что такое “Электрический реактор” в других словарях:

электрический реактор — Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи Примечание. Силовая электрическая цепь по ГОСТ 18311 80 [ГОСТ 18624 73] Недопустимые, нерекомендуемые дроссель Тематики реактор электрический Классификация… … Справочник технического переводчика

электрический реактор — elektrinis reaktorius statusas T sritis automatika atitikmenys: angl. reactor vok. Drosselspule, f rus. электрический реактор, m pranc. bobine de réactance, f; inductance, f … Automatikos terminų žodynas

электрический реактор. Реактор — 3.46 электрический реактор. Реактор: Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи. Источник: СТО 17330282.27.140.008 2008: Системы питания со … Словарь-справочник терминов нормативно-технической документации

насыщающийся (электрический) реактор — трансреактор — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы трансреактор EN transductor … Справочник технического переводчика

электрический — 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

РЕАКТОР — (1) биологический (ферментёр) аппарат для получения в промышленном масштабе различных биологических продуктов при размножении микроорганизмов в питательной среде и стерильных условиях, при определённых температурах и др. параметрах… … Большая политехническая энциклопедия

РЕАКТОР ЭЛЕКТРИЧЕСКИЙ — высоковольтный электрический аппарат (в виде катушки индуктивности) для ограничения тока короткого замыкания (КЗ) и поддержания достаточного напряжения на шинах распределительного устройства при кратковременном коротком замыкании в сети … Большой Энциклопедический словарь

реактор без стали — Реактор без магнитопровода Примечание. Допускаются сокращенные наименования реакторов в соответствии с формой обмотки и способом защиты элементов реактора от вредных воздействий его магнитного поля или ослабления внешнего поля, в частности… … Справочник технического переводчика

реактор помехоподавления — Реактор, предназначенный для работы в устройстве ограничения радиопомех, включаемом последовательно в фазу или линию [ГОСТ 18624 73] реактор помехоподавления Ндп. радиореактор По ГОСТ 18624 73 [ГОСТ 19350 74] реактор помехоподавления [Лугинский Я … Справочник технического переводчика

реактор с линейной характеристикой — Реактор, веберамперная характеристика которого практически линейна при токах до значений, во много раз превышающих номинальный Примечание. Динамическая индуктивность не должна изменяться более чем на 5% при изменении тока от 2% номинального до… … Справочник технического переводчика

Токоограничивающие реакторы

Реактор – это катушка с неизменной индуктивностью, предназначенная для поддержания напряжения на шинах и ограничения токов короткого замыкания в случае возникновения аварийных режимов работы. Для более детального понимания давайте рассмотрим рисунок ниже:

Сборные шины 2 получают питание от генератора 1. От этих шин идут линии 3 к потребителю. Рассмотрим два случая – за выключателем 4 реактор не установлен, а за выключателем 5 установлен реактор 6.

В случае возникновения трехфазного короткого замыкания за выключателем 4 ток короткого замыкания Iк1 будет определяться в основном индуктивным сопротивлением генератора:

Введем понятие относительного индуктивного сопротивления генератора, выраженного в процентах:

Где Iн.г – номинальный ток генератора.

Воспользовавшись формулами (1) и (2) получим:

В таком случае напряжение на сборных шинах станет равно нулю и, соответственно, на всех отходящих линиях напряжения тоже не будет.

Стоит также отметить, что выключатель 4 должен быть выбран по току короткого замыкания Ik1.

В случае короткого замыкания на линии с реактором ток короткого замыкания будет определяться суммарным сопротивлением реактора и генератора:

Введем относительное реактивное сопротивление реактора в процентах:

Обычно от одного источника питаются несколько десятков потребителей электрической энергии. Поэтому значение номинального тока линии намного меньше номинального тока генератора. Длительный ток реактора выбирается исходя из длительного тока линии, откуда следует Iн.р > Хг. При этом можно написать:

При сделанных допущениях ток короткого замыкания будет определяться только параметрами реактора.

Реактор довольно надежный аппарат и его повреждение или выход из строя практически исключены. Поэтому выбор аппаратуры линии производят по току производят исходя из соотношения Ik2 > Xг, то в случае возникновения короткого замыкания практически все напряжение ложится на индуктивное сопротивление реактора и напряжение на шинах получается близким к номинальному (рисунок ниже а)):

В номинальном режиме работы через реактор проходит ток нагрузки. Потерю напряжения на реакторе можно определить по формуле:

Векторная диаграмма напряжения показана на рисунке выше б). При чисто индуктивной нагрузке φ = 90 0 потеря напряжения равна падению напряжения на реакторе. В случае работы на активную нагрузку с cosφ = 0,8 потеря напряжения равна 0,6 Хр%. Отсюда следует, что потеря напряжения на реакторе в длительном режиме невелика.

В настоящее время разработаны и успешно эксплуатируются специальные сдвоенные реакторы, у которых в номинальном режиме работы потеря напряжения еще меньше.

Поскольку выбор электрической аппаратуры распределительного устройства проводится с учетом ограничения тока короткого замыкания реактором, то к его надежности предъявляются особо высокие требования.

В номинальном режима работы обмотка реактора нагревается проходящим через него током. Мощность, которая выделяется в обмотке реактора, составляет несколько киловатт при малых токах, и несколько десятков киловатт при больших токах (Iн.р = 2000 А).

В случае короткого замыкания через реактор проходит ток во много раз превышающий номинальное значение. Данное явление приводит к быстрому повышению температуры реактора.

Поэтому в качестве основных параметров вводят длительный номинальный ток Iн и ток термической стойкости Iн.т, отнесенный к определенному времени tн.т. Иногда термическая стойкость задается произведением:

Если индуктивное сопротивление реактора превышает 3%, то наибольший ток короткого замыкания, проходящий через реактор, задается соотношением:

Данный ток берется за основу при расчете электродинамической и термической стойкости реактора.

Читайте далее:
Ссылка на основную публикацию
Adblock
detector