Сетевой инвертор принцип работы - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Сетевой инвертор принцип работы

Солнечный инвертор

В настоящее время альтернативная энергетика все более прочно входит в повседневную жизнь современного человека и причин тут несколько. Это и экологическая безопасность подобных производств, и возможность создать автономную систему электроснабжения, которая, по истечении срока окупаемости, может приносить определенный доход пользователю.

Одним из видов производства электрической энергии, использующем альтернативный и возобновляемый источник, является солнечная энергетика, а одним из устройств, обеспечивающим работу солнечной электростанции в автоматическом режиме, является инвертор.

Что это такое

Солнечный инвертор – это техническое устройство, служащее для преобразования постоянного электрического тока, напряжением 12/24/48 В, вырабатываемого солнечными батареями, в переменный, используемый для освещения и питания различных приборов и устройств напряжением 220/380 В.

Зачем он нужен

Работа солнечной электростанции в качестве основного или резервного источника электроснабжения, предполагает подключение определенного количества нагрузки, в качестве которой выступают бытовые приборы и технические устройства, для работы которых требуется переменный ток напряжением 220/380 В.

В свою очередь, солнечная батарея (панель), вырабатывает постоянный ток напряжением более низкого порядка, посредством которого заряжаются аккумуляторные батареи, входящие в состав солнечной электростанции (накопители выработанного электричества).

Схема работы солнечной электростанции приведена на рисунке:

Для того, чтобы преобразовать, накопленную в аккумуляторах электрическую энергию, в параметры, соответствующие параметрам подключаемых устройств, и служат технические устройства, называемые инверторами.

Типы солнечных инверторов

Инверторы, для солнечных электростанций, производятся в различной исполнении и отличаются друг от друга по техническим характеристикам, стоимости и наличию средств автоматики и защиты. А вот типов подобных устройств, определяющих их способность работать по отношению к традиционной сети электроснабжения (от энергоснабжающих организаций), всего три, это:

    Автономные («off gr >Инверторы сетевого типа

Отличительной особенностью сетевых инверторов является характер их работы по отношению к вешней электрической сети.

Устройства данного типа устанавливаются в электрическую цепь между солнечной панелью и электрической сетью 220/380 В. Установка сетевого инвертора предполагает работу солнечной электростанции без наличия накопителей энергии (аккумуляторов), когда выработанный солнечными батареями ток идет на питание отдельных потребителей, подключаемых непосредственно к инвертору, а излишки – во вешнюю сеть. Работа такого устройства осуществляется только в дневное время, когда есть солнечный свет.

Инверторы автономного типа

Инверторы автономного типа работают в составе солнечных электростанций, обеспечивающих автономное электроснабжение потребителей электрической энергии. Технические устройства данного типа преобразуют накопленную в аккумуляторах энергию до требуемых параметров и обеспечивают надежность автономного электроснабжения.

В зависимости от формы выходного сигнала по току, инверторы данного типа подразделяются на: синусоидальные и квази-синусоидальные.

Синусоидальные инверторы обладают лучшими техническими показателями, но больше по габаритным размерам и стоимости, нежели квази-синусоидальные, что определяет сферу их использования и распространение на рынке подобных устройств.

Основные технические характеристики

При выборе типа инвертора и возможности его установки в той или иной схеме электроснабжения, основными параметрами, определяющими выбор, служат его технические характеристики, каковыми являются:

  • Мощность – определяет количество нагрузки (приборов и устройств), которое можно подключить к конкретному устройству. Номинальная мощность, указывает на длительно допустимую нагрузку, при подключении которой инвертор способен работать продолжительное время. Максимально допустимая (пиковая) мощность, определяет способность преобразовывать электрический ток не продолжительное время, в моменты запуска электрических двигателей или иных устройств, при включении которых в работу происходит скачек электрического тока (ток запуска).
  • Вид выходного сигнала (форма синусоиды) – определяет возможность подключения того или иного оборудования к конкретной модели инвертора. При использовании более дешевых устройств, с квази-синусоидальной формой сигнала по электрическому току, возможны сложности в процессе эксплуатации приборов и агрегатов, чувствительных к качеству электрического тока (отопительные котлы, насосы, электронные устройства).
  • Напряжение на входе и выходе – определяет возможность установки с определенным видом солнечных панелей, вырабатывающих электрический ток напряжением 12/24/48 В, и в соответствии с этим, напряжением сети питания потребителей – 220 и 380 В.
  • Наличие защитных элементов – зависит от конкретной модели устройства. Основными видами защиты являются – защита от короткого замыкания и перегрузки.
  • Дополнительные опции – также зависит от модели устройства. Это может быть установка встроенной розетки, жидкокристаллического дисплея, зарядного устройства и прочих элементов.

Популярные модели

Каждый пользователь выбирает для себя сам какую модель выбрать и где ее купить. Конечно же оптимальным местом для выбора и приобретения сложных технических устройств, к каковым относится солнечный инвертор, являются компании дилеры производителей подобных изделий, но не везде они присутствуют, поэтому можно воспользоваться сетью интернет, где можно найти модель, соответствующую предъявляемым к ней требованиям.

В настоящее время наибольшей популярностью пользуются серии и модели:

  • «СибВольт» (Россия) – сетевые инверторы, номинальной мощностью от 1,5 до 3,0 кВт, на напряжение 12/24/48 В.
  • «Sunrise» (Китай) – гибридного типа, номинальной мощностью 3,2 и 4,0 кВт, на напряжение 48 В.
  • «UMA» (Россия) – автономного типа, номинальной мощностью от 2,4 до 4,0 кВт, на напряжение 24/48 В.
  • «S300» (Тайвань) – автономного типа, номинальной мощностью 300,0 Вт, на напряжение 12/24 В.
  • «Stark Country» (Китай) — гибридного типа, номинальной мощностью от 1,6 до 4,0 кВт, на напряжение 12/24/48 В.
  • «Sunville SV15000s» (Россия) – сетевое устройство, номинальной мощностью 15,0 кВт.

Серии и конкретные модели, на рынке подобных товаров, представлены достаточно обширно, как в плане технических характеристик, так и компаний их выпускающих. В связи с этим всегда есть возможность выбрать устройство в соответствии с личными пожеланиями пользователя основываясь на критериях выбора рассмотренных ниже.

Как выбрать лучший?

Как уже было указано выше, на рынке подобных устройств, представлено большое количество моделей различных производителей, которые схожи по своим техническим характеристикам. Для того, чтобы выбрать инвертор, и при этом не ошибиться, необходимо следовать критериям выбора, которыми являются:

  1. Номинальная мощность.
  2. Максимальная (пиковая) мощность.
  3. Форма выходного сигнала по току.
  4. КПД.
  5. Эксплуатационные показатели (температура, влажность, высота установки над уровнем моря).
  6. Напряжение на «входе» и «выходе» устройства.
  7. Наличие средств защиты от токов КЗ и перегрузки.
  8. Наличие «спящего» режима, вентилятора охлаждения и дополнительных опций.
  9. Габаритные размеры и вес.
  10. Бренд и надежность производителя.
  11. Стоимость.

Опираясь на выше приведенные критерии и зная параметры сети, каждый пользователь способен самостоятельно выбрать лучшую модель, из представленных, в настоящее время, в конкретном регионе или на интернет ресурсах.

Подключение инвертора к солнечной батарее

Инвертор является устройством, работающим в комплексе с другими элементами солнечной электростанции, которыми являются:

  • Солнечная панель – источник электрической энергии;
  • Аккумуляторная батарея – накопитель выработанной энергии;
  • Контроллер заряда – отвечает за состояние аккумуляторных батарей, контролирует режим их работы — «заряд-разряд»;
  • Провода и кабели – обеспечивают соединение всех устройств в единую электрическую цепь;
  • Несущие конструкции – обеспечивают надежное крепление монтируемого оборудования, некоторые устройства, позволяют регулировать положение солнечных панелей в пространстве, в соответствии с расположением солнца.

Подключение инвертора в схему работы электрической станции, зависит от типа устройства, т.е. способности работать по отношению к внешней электрической сети.

Читайте также:  Можно ли встроить обычный холодильник в кухню?

Подключение, в зависимости от типа инвертора, выполняется по следующей схеме, для:

  • Автономных («off gr />Модели данного типа устанавливаются между нагрузкой и аккумулятором, зарядка которого также осуществляется через контакты инвертора. У некоторых моделей, как показано на рисунке, может быть предусмотрен отдельный вход для подключения к электрической сети переменного тока, для обеспечения зарядки аккумуляторов, в случае невозможности их заряда от солнечных батарей.
    • Сетевых («on grid») моделей.

    Инверторы данного типа, включаются в электрическую цепь между солнечной батарей и элементами нагрузки и внешней электрической сетью. У данного типа устройств не предусмотрено подключение аккумуляторных батарей. В случаях, когда количество вырабатываемой электрической энергии превышает требуемые значения, излишки перераспределяются во внешнюю сеть.

    Гибридный тип подобных устройств, предполагает установку инвертора между аккумуляторами, внешней сетью и нагрузкой одновременно.Использование инвертора, в схемах солнечных электростанций, позволяет осуществлять их работу в автоматическом режиме, что значительно упрощает их использование и расширяет сферу применения.

    Подбор солнечного сетевого инвертора

    Какой солнечный инвертор можно назвать сетевым?

    Сетевыми (grid-tie) инверторами являются устройства, которые преобразовывают постоянное (DC) напряжение, полученное от возобновляемых источников энергии, в переменное (AC) и передают его напрямую в сеть 220 (или 380)В.

    В основном бытовые электроприборы являются потребителями переменного тока.

    Для частных домов применяют солнечные сетевые инверторы мощностью до 30кВт. Такие инвертора работают следующим образом: выработаную солнечными батареями электроэнергию преобразовывают и сбрасывают её в внутридомовую сеть откуда потребиели электроэнергии запитываються, если образовываються излишки энергии, то сетевой инвертор направляет её во внешнюю сеть через двунаправленый прибор учета для продажи по «зеленому» тарифу.

    Принцип работы сетевого инвертора состоит в перетекании тока, синхронизированного по частоте и фазе, при этом напряжение инвертора должно быть чуть выше напряжения в сети.

    В целях безопасности сетевые инверторы оборудуются так называемой anti – islanding защитой: в случае выхода сети из строя, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель отключает выход от сети.

    Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – ближе к напряжению в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT)) позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

    Сетевые инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт.


    Подбор сетевого инвертора для дома

    При выборе солнечного сетевого инвертора в первую очередь стоит обратить внимание на разрешенную мощность по договору с энергоснабжающей компанией. Если по договору мощность 1,3 кВт (стандартное подключение, 1 фаза), то инвертор сетевого типа должен соответствовать этой мощности. В противном случае оформить «зеленый» тариф не получиться и выработанную солнечными панелями энергию можно будет использовать только на собственные нужды. Также в случае использования сетевого инвертора без подключения к «зеленому» тарифу необходимо приобрести специальный измерительный счетчик (METER или EZMETER) с функцией «PowerLimiting». Это функция ограничения генерируемой мощности, отдаваемой в сеть.

    Используя METER или EZMETER, сетевой инвертор измеряет отдаваемую мощность в питающую сеть и подстраивает генерацию энергии, в зависимости от установленного ограничения. Есть несколько компаний, которые имеют такие измерительные счетчики для использования с сетевыми инверторами т.к. GoodWe и Fronius.

    Если же задачей является продажа в сеть по «зеленому» тарифу и заработок, то сетевой инвертор необходимо подбирать по следующим параметрам:

    1. Мощность инвертора не больше разрешенной мощности (можно повысить до 30 кВт);
    2. Потребляемая домовой нагрузкой электроэнергия должна быть не больше генерируемой солнечными батареями и выдаваемой сетевым инвертором;
    3. Инвертор должен быть сертифицированным;
    4. Инвертор должен быть смонтирован организацией имеющей лицензию на строительство объектов 4 и 5 категории сложности.

    Для солнечных станций под «зеленый» тариф можно использовать:

    1. Европейские инверторы: Fronius (Австрия), АВВ (Италия), SMA (Германия), Delta (Нидерланды) Kaco (Германия), Kostal (Германия) и многие другие.
    2. Китайские инвертора: Huawei , GoodWe, Trannergy, АKSG и многие другие.

    Посмотреть цены и описания

    При постройке солнечной электростанции выберайте не только оборудование, но и компанию которая смонтирует этот инвертор, введет станцию в эксплуатацию и будет нести гарантийные обязательства перед своими клиентами. Обращайте внимания на наличие реализованных объектов.

    Какой инвертор выбрать?

    Инверторы используются для преобразования постоянного тока от аккумуляторов или солнечных модулей в переменный ток, аналогичный тому, который присутствует в сетях централизованного электроснабжения.

    Существует несколько различных типов инверторов, сетевые,автономные,комбинированные и гибридные :

    • Сетевой инвертор работает только совместно с сетью переменного тока без использования аккумуляторных батарей и используется либо для экономии затрат на электроэнергию либа в случаях когда выделенных лимитов на электроэнергию не достаточно. В системах с сетевыми инверторами вырабатываемая солнечными панелями энергия сразу же поступает (через сетевой инвертор) в вашу сеть. Функция зарядки или питания от аккумуляторов в таких инверторах не предусмотрена.
    • Автономный инвертор работает только совместно с солнечными панелями в комплекте с аккумуляторными батареями .В течении светового дня вырабатываемая солнечными панелями энергия через контроллер заряда поступает в аккумуляторные батареи и накапливается в них. Инвертор преобразовывает постоянное напряжение ( 12, 24, 36, 48В, … ) с аккумуляторов в переменное напряжение 220В и передает на нагрузку ( электрооборудование ). В автономных инверторах со встроенным контроллером заряда накопление в аккумуляторах энергии и ее передача на нагрузку осуществляется немного по другой схеме, а именно поступаемая с солнечных панелей в инвертор-контроллер энергия, в первую очередь питает нагрузку, а ее излишек накапливается в аккумуляторах. Существуют инверторы в которых можно выставлять приоритеты зарядки и нагрузки.
    • Комбинированный инвертор работает с солнечными панелями и аккумуляторными батареями, но при этом он так же может быть подключен к сети 220В для питания от нее нагрузки и зарядки аккумуляторных батарей. В современных комбинированных инверторах ( таких как SILA ) возможен выбор режимов и приоритетов зарядки и нагрузки.То есть пользователь может сам решить откуда в первую очередь должна браться энергия на нагрузку и на зарядку аккумуляторов( к примеру вы можете настроить ваш инвертор так, что в первую очередь энергия с солнечных батарей будет питать ваши электроприборы, оставшаяся энергия будет заряжать аккумуляторы, при этом если энергии от солнечных батарей будет не достаточно для нагрузки она будет добиралась из сети переменного тока либо сначала из аккумуляторов, а уже потом из сети).
    • Гибридный инвертор объединяет в себе все функции сетевого, автономного и комбинированного инвертора.

    Есть много различных инверторов, отличающихся по мощности и по типу. Некоторые инверторы имеют очень высокую эффективность, что всегда полезно. Если ваш инвертор будет часто находится без нагрузки, выберите такой инвертор, который имеет низкое потребление в ждущем режиме. Если ваш инвертор будет большую часть времени питать нагрузку, выбирайте инвертор с максимальным КПД.

    Солнечные элементы вырабатывают постоянный ток, и аккумуляторы хранят энергию в виде постоянного тока. Но большинство приборов и потребителей энергии требуют переменный ток напряжением 220 или 380В. Инвертор преобразует низкое напряжение 12, 24, 32, 36, 48 и т.д. постоянного тока в высокое напряжение 220В переменного тока. Часть энергии неизбежно теряется при преобразовании – от 5 до 20% в зависимости от качества инвертора и режима его работы.

    Инверторы бывают различной мощности. Их тип выбирается в зависимости от применения. Маломощные инверторы (100-1000 Вт) обычно применяются в малых автономных системах для питания, например, лампочек, телевизора, радио и т.п. Они обычно бывают на входное напряжение 12 или 24В и выходное 220В. Более мощные инверторы имеют входное напряжение 24 или 48В (а иногда и 192 и выше вольт) . Для обеспечения пусковых токов двигателей нужно выбирать инверторы которые обеспечивают многократную кратковременную перегрузку.

    Дешевые инверторы генерируют ступенчатую или прямоугольную форму напряжения – так называемую квазисинусоидальную форму, или модифицированную синусоиду. Такая форма напряжения не всегда подходит к приборам. Инверторы с синусоидальной формой напряжения обеспечивают качество энергии такое же, как в сети, и могут питать без проблем любую нагрузку переменного тока.

    Инверторы делятся на трансформаторные (низкочастотные) и бестрансформаторные (высокочастотные).

    Главным отличием первых является наличие трансформатора на выходе инвертора, предназначенного для повышения напряжения до сетевого (220/380 В). В бестрансформаторных устройствах функции трансформатора выполняет электроника.

    Остальные отличия двух технологий:

    • Бестрансформаторная архитектура позволяет добиться эффективности в 98% по сравнению с трансформаторной (80-92%);
    • Собственное потребление бестрансформаторных инверторов значительно меньше чем у трансформаторных;
    • Бестрансформаторные инверторы более уязвимы к поломкам, поскольку электронные блоки менее надежды, чем пассивный трансформатор;
    • Трансформаторные устройства поддерживают более высокий ток заряда, что увеличивает скорость заряда батарей и их количество;
    • Трансформаторные устройства имеют больший вес и размер по сравнению с бестрансформаторными;
    • Бестрансформаторные инверторы имеют более низкую стоимость по сравнению с трансформаторными;

    Многие современные инверторы также обладают следующими функциями:

    1. Измерения: на дисплее отображается напряжения и токи, частота и мощности.
    2. Возможность автозапуска генератора: В инверторе имеются дополнительные реле для автоматического запуска и останова резервного генератора в зависимости от напряжения на батарее. Часто эта функция реализована в виде опции как отдельный блок к инвертору. Продвинутые инверторы могут заряжать аккумуляторы от сети только в определенное время, или запускать генератор только в дневное время (чтобы не шуметь ночью).
    3. Работа параллельно с сетью Сетевые инверторы напрямую поставляют энергию от солнечных батарей в сеть, без необходимости иметь аккумуляторы. Это существенно уменьшает стоимость системы, а также позволяет уменьшить счета за электроэнергию.
    4. Встроенное зарядное устройство : Такие инверторы могут использовать энергию от сети или генератора для заряда АБ. Одновременно они могут транслировать энергию от этих источников в нагрузку напрямую в нагрузку. Продвинутые инверторы могут задавать или динамически менять зарядный ток для избежания перегрузки генератора. Также, они имеют многостадийные зарядные устройства, которые обеспечивают безопасный полный заряд АБ, требуемый для увеличения срока их службы.
    5. Параллельное соединение: Некоторые инверторы могут быть соединены параллельно для увеличения мощности.

    Сетевой инвертор принцип работы

    СОЛНЕЧНАЯ ЭЛЕКТРИЧЕСКАЯ СИСТЕМА НА ОСНОВЕ СЕТЕВОГО ИНВЕРТОРА Новое поступление 2020 – сетевые.

    Уникальные солнечные Монокристаллические батареи GPMp-310W60! Мы пополняем наш склад монокристаллическими.

    ВНИМАНИЕ! Представляем новейшие солнечные модули Российского производства: гетероструктурные модули Hevel Компания.

    Новинка на рынке накопления энергии – АКБ KORD c технологией DEEP CYCLE+CARBON Наша компания начала.

    Настоящие Щвейцарские Микроморфные тонкопленочные модули от компании Pramac, мощностью 125 Вт по цене закупки!.

    Мы идем навстречу нашим Клиентам! С декабря 2018 года всю нашу продукцию можно приобрести в рассрочку.

    На наш склад поступают новые аккумуляторы от известного производителя DELTA с улучшенными.

    Seraphim Blade Poly 280Вт это применение в сравнительно бюджетном продукте одного из технологических решений, ранее.

    Лето в полном разгаре, но и зима не за горами. Самое время позаботиться о бесперебойной работе.

    Уважаемые Клиенты и Посетители сайта! В связи с постоянно меняющимися курсами валют и стоимостью оборудования и материалов.

    Уважаемые Покупатели и Посетители нашего сайта! Если Ваша цель – получение максимума солнечной генерации.

    НОВИНКА на рынке аккумуляторов! Специально к началу водномоторного и туристического сезона!.

    Рекомендуемые товары

    Статьи

    Сетевой инвертор – понятие и принцип работы

    Сетевыми (или grid-tie) инверторами являются устройства, преобразующие постоянное (DC) напряжение от возобновляемых источников энергии (солнечных батарей, ветроустановок или микроГЭС) в переменное (AC) напряжение, и передающие его напрямую в сеть 220 (или 380)В, тем самым снижая потребление электроэнергии от энергосетей.

    Сетевые инверторы также называют синхронными преобразователями, так как они обладают отличительной особенностью – наличием синхронизации выходного напряжения и тока со стационарной сетью.

    Таким образом, сетевой инвертор осуществляет преобразование постоянного тока от солнечных батарей и других возобновляемых источников энергии в переменный, с надлежащими значениями частоты и фазы для сопряжения со стационарной сетью. Как правило, преобразование осуществляется с помощью MPPT технологии: “Точка поиска максимальной мощности”.

    Принцип работы сетевого инвертора состоит в перетекании тока от сетевого инвертора в нагрузку, синхронизированного по частоте и фазе с входящим напряжением, при этом напряжение инвертора должно быть чуть выше напряжения в сети. Это становится возможным с помощью замера входной сети и повышения напряжения на выходе сетевого инвертора, чтобы вся энергия от солнечных батарей, преобразованная на сетевом инверторе использовалась в первую очередь и на 100%..

    В целях безопасности сетевые инверторы оборудуются так называемой anti – islanding защитой: в случае выхода сети из строя, отключения внешней сети, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель в сетевом инверторе, отключает его выход от сети.

    Срабатывание данного вида защиты зависит от настроек инвертора и условий сети. В худшем случае – если напряжение в сети опускается ниже от установленного в программе инвертора параметра или частота отклоняется на 0,5 -0,7 Гц от запраграммированного значения, сетевой инвертор должен остановить процесс генерации электроэнергии в сеть не менее чем за 100 миллисекунд.

    Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – как правило не ниже, чем значение напряжения в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT)) позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

    В настоящее время сетевые инверторы находят широкое применение для экономии электроэнергии на производствах, в офисах, в торговых центрах и т.п. Сетевые фотоэлектрические системы устанавливаются на таких объектах мощностью от 500 ватт и до сотен кВт.

    Сетевые инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт. Подобные инверторы (преобразовательные станции) построены по модульному принципу, с целью минимизации потерь и извлечения максимальной эффективности использования солнечной энергии.

    Основные характеристики сетевых инверторов

    • номинальная выходная мощность – мощность, получаемая от данного инвертора при номинальном массиве соолнечных панелей.
    • выходное напряжение – показатель, определяющий к какой сети по напряжению может быть подключен инвертор. Для небольших инверторов (бытового назначения) выходное напряжение обычно равно 220 – 240В. Инверторы для промышленного назначения рассчитаны на к 3-х фазную сеть 380В.
    • максимальная эффективность – наивысшая эффективность преобразования энергии, которую может обеспечить инвертор. Максимальный КПД большинства сетевых инверторов составляет более 94%, у некоторых – до 99%.
    • взвешенная эффективность- средняя эффективность инвертора, этот показатель лучше характеризует эффективность работы инвертора. Этот показатель важен, так как инверторы, способные преобразовывать энергию при различных выходных напряжениях переменного тока, имеют разную эффективность при каждом значении напряжения.
    • максимальный входной ток – максимальное количество постоянного тока, которое может преобразовывать инвертор. В случае, если какой-либо возобновляемый источник (например, солнечная панель) будет производить ток, превышающий это значение, сетевой инвертор его не использует.
    • максимальный выходной ток – максимальный непрерывный переменный ток, производимый инвертором. Этот показатель используют для определения минимального (номинального) значения перегрузки по току устройств защиты (к примеру, выключателей или предохранителей).
    • диапазон отслеживания напряжения максимальной мощности – диапазон напряжения постоянного тока, в котором будет работать точка максимальной мощности сетевого инвертора.
    • минимальное входное напряжение – минимальное напряжение, необходимое для включения инвертора и его работы. Этот показатель особенно важен для солнечных систем, так как разработчик системы должен быть уверен, что для произведения этого напряжения в каждой цепочке последовательно соединено достаточное количество солнечных модулей.
    • степень защиты IP (или код исполнения) – характеризует степень защиты корпуса от проникновения внешних твердых предметов (первая цифра), а также воды (вторая цифра).

    Пример среднесуточной генерации сетевой солнечной системы 12 кВт для Самарской области

    Сетевой инвертор – что это и как работает?

    • 02 сентября 2016 09:05:58
    • Отзывов:
    • Просмотров: 4462

    Сетевыми (или grid-tie) инверторами являются устройства, преобразующие постоянное (DC) напряжение от возобновляемых источников энергии (фотомодулей, ветроустановок или микроГЭС) в переменное (AC) напряжение, и передающие его напрямую в сеть 220 (или 380) В, тем самым снижая потребление электроэнергии от энергосетей.

    Сетевые инверторы также называют синхронными преобразователями, так как они обладают отличительной особенностью – наличием синхронизации выходного напряжения и тока со стационарной сетью.

    Таким образом, сетевой инвертор осуществляет преобразование постоянного тока от солнечных батарей и других возобновляемых источников энергии в переменный, с надлежащими значениями частоты и фазы для сопряжения со стационарной сетью. Как правило, преобразование осуществляется с помощью PWM – широтно-импульсной модуляции.

    Принцип работы сетевого инвертора состоит в перетекании тока, синхронизированного по частоте и фазе, при этом напряжение инвертора должно быть чуть выше напряжения в сети. Это становится возможным с помощью замера и повышения напряжения на выходе сетевого инвертора до текущего значения потока выходной мощности от источника постоянного тока.

    В целях безопасности сетевые инверторы оборудуются так называемой anti – islanding защитой: в случае выхода сети из строя, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель отключает выход от сети.

    Срабатывание данного вида защиты зависит от настроек инвертора и условий сети. В худшем случае – если напряжение в сети опускается ниже 0,5 от номинального, а частота отклоняется на 0,5 -0,7 Гц от номинального значения, сетевой инвертор должен остановить процесс генерации электроэнергии в сеть не менее чем за 100 миллисекунд.

    Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – ближе к напряжению в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT)) позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

    В настоящее время сетевые инверторы находят широкое применение для экономии электроэнергии на производствах, в офисах, в торговых центрах и т.п. Сетевые фотоэлектрические системы строятся на таких объектах мощностью от 500 Вт и выше.

    Сетевые солнечные инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт. Подобные инверторы (преобразовательные станции) построены по модульному принципу, с целью минимизации потерь и извлечения максимальной эффективности использования солнечной энергии.

    Основные характеристики сетевых инверторов

    • Номинальная выходная мощность – мощность, получаемая от данного инвертора.
    • Выходное напряжение – показатель, определяющий к какой сети по напряжению может быть подключен инвертор. Для небольших инверторов (бытового назначения) выходное напряжение обычно равно 240 В. Инверторы для промышленного назначения рассчитаны на 208, 240, 277, 400 или 480 В, кроме того их можно подключать к 3-х фазной сети.
    • Максимальная эффективность – наивысшая эффективность преобразования энергии, которую может обеспечить инвертор. Максимальный КПД большинства сетевых инверторов составляет более 94%, у некоторых – до 97%.
    • Взвешенная эффективность – средняя эффективность инвертора, этот показатель лучше характеризует эффективность работы инвертора. Этот показатель важен, так как инверторы, способные преобразовывать энергию при различных выходных напряжениях переменного тока, имеют разную эффективность при каждом значении напряжения.
    • Максимальный входной ток – максимальное количество постоянного тока, которое может преобразовывать инвертор. В случае, если какой-либо возобновляемый источник (например, солнечная панель) будет производить ток, превышающий это значение, сетевой инвертор его не использует.
    • Максимальный выходной ток – максимальный непрерывный переменный ток, производимый инвертором. Этот показатель используют для определения минимального (номинального) значения перегрузки по току устройств защиты (к примеру, выключателей или предохранителей).
    • Диапазон отслеживания напряжения максимальной мощности – диапазон напряжения постоянного тока, в котором будет работать точка максимальной мощности сетевого инвертора.
    • Минимальное входное напряжение – минимальное напряжение, необходимое для включения инвертора и его работы. Этот показатель особенно важен для солнечных систем, так как разработчик системы должен быть уверен, что для произведения этого напряжения в каждой цепочке последовательно соединено достаточное количество солнечных модулей.
    • Степень защиты IP (или код исполнения) – характеризует степень защиты корпуса от проникновения внешних твердых предметов (первая цифра), а также воды (вторая цифра)
Ссылка на основную публикацию
Adblock
detector