Защита трехфазного двигателя от пропадания одной фазы - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Защита трехфазного двигателя от пропадания одной фазы

Защита трехфазного двигателя

Способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети.

Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.

Устройства защиты можно условно разделить на релейные и диодно-транзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.

Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.

Первый способ (рис.1)

Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания теплового реле подбирается таким образом, что и постоянная нагревания электродвигателя. То есть проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель. При отключении одной фазы, ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле.

Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус, двигатель обязательно должен быть заземлен или занулен.

Недостаток этого способа в том, что тепловые реле достаточно дороги (примерно столько же, сколько и пускатель) и для надежной защиты его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.

Второй способ (рис. 2).

В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки “Пуск” через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Третий способ (рис 3).


Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1′), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0′ включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.

Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.

Четвертый способ (рис. 4).


Схема защитного устройства аналогична схеме, рассмотренной во втором способе. При нажатии кнопки “Пуск” включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.

Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.

В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.

По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.

Всего хорошего, пишите to Elremont © 2005

Защита трехфазного двигателя, способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети

Защита трехфазного двигателя

Способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети.

Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.

Устройства защиты можно условно разделить на релейные и диодно-транзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.

Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.

Первый способ (рис.1)

Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания теплового реле подбирается таким образом, что и постоянная нагревания электродвигателя. То есть проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель. При отключении одной фазы, ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле.

Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус, двигатель обязательно должен быть заземлен или занулен.

Недостаток этого способа в том, что тепловые реле достаточно дороги (примерно столько же, сколько и пускатель) и для надежной защиты его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.

В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки “Пуск” через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Третий способ (рис 3).

Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1′), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0′ включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.

Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.

Четвертый способ (рис. 4).

Схема защитного устройства аналогична схеме, рассмотренной во втором способе. При нажатии кнопки “Пуск” включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.

Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.

В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.

По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.

Трехфазный электродвигатель: автомат защиты

3ащита электродвигателя или другой трехфазной нагрузки от выхода из строя при низкокачественном электропитании – весьма актуальная задача, особенно в сельской местности. Низкое качество поставляемой электроэнергии проявляется в асимметрии действующих значений напряжения в фазах трехфазной сети и даже в полном отсутствии напряжения одной из фаз. Это может привести к тепловой перегрузке двигателя и перегоранию его статорных обмоток. Предлагаемое устройство автоматически отключит нагрузку от сети при возникновении опасной ситуации.

Рис. 1 Принципиальная схема устройства

Схема автомата изображена на рисунке. Сигнал о нарушении симметрии электропитания формируется по принципу, описанному, например, в статье А. Сергеева “Сигнализатор “перекоса” фаз” (“Радио”, 2003, № 11, с. 42, 43). С помощью трех одинаковых реактивных сопротивлений – в рассматриваемом случае конденсаторов С1-СЗ – создана “искусственная нейтраль”. Можно показать, что при равенстве значений емкости конденсаторов и идеальной симметрии трехфазной сети напряжение между искусственной и реальной нейтралью равно нулю. При нулевом напряжении в одной из фаз (но в отсутствие ее обрыва) контрольное напряжение равно приблизительно трети фазного При нулевом напряжении в двух фазах оно достигает половины, а при обрывах в двух фазах – его полного значения. Таким образом, достаточно настроить автомат на срабатывание при критическом уменьшении напряжения в одной из фаз, в других ситуациях он сработает еще увереннее.

Читайте также:  Дифзащита трансформатора принцип действия

При нажатии на кнопку SB1 “Пуск” фазное напряжение поступает на обмотку пускателя КМ1, и он своими основными контактами подключает электродвигатель М1 или другую нагрузку к трехфазной сети. Вспомогательные контакты пускателя блокируют кнопку SB1, которую теперь можно отпустить. Выключение двигателя происходит в результате разрыва цепи питания обмотки пускателя КМ1 при нажатии на кнопку SB2 “Стоп” или при срабатывании реле К1.

На обмотку этого реле поступает пропорциональное “перекосу фаз” напряжение между точкой соединения конденсаторов С1-СЗ и нейтралью трехфазной сети N, выпрямленное диодным мостом VD1-VD4. Реле сработает, если это напряжение превысит некоторое пороговое значение, которое можно регулировать переменным резистором R1.

Конденсатор С4 не только сглаживает пульсации подаваемого на реле напряжения, но и обеспечивает необходимую для отключения пускателя КМ1 продолжительность удержания контактов реле К1.1 в разомкнутом состоянии. Кроме того, конденсатор предотвращает ложные срабатывания автомата, к которым может привести неодновременное замыкание контактов КМ 1.1 при срабатывании пускателя. Стабилитроны VD5- VD7 ограничивают на допустимом уровне напряжение на обмотке реле К1 и конденсаторе С4 при слишком большом “перекосе”.

Как показывает практика, для электродвигателя критично уменьшение напряжения в одной из фаз примерно до 70 % номинального, т. е. до 150. 140 В в сети 220/380 В. В этой ситуации действующее значение напряжения между искусственной и реальной нейтралями достигнет 20. 25 В, а на выходе выпрямительного моста VD1 – VDВ (в действительности под нагрузкой, создаваемой обмоткой реле К1, напряжение будет немного меньше).

Чтобы обеспечить срабатывание автомата при таком “перекосе”, в качестве К1 выбрано реле РП21 с обмоткой на 24 В постоянного тока и с группой контактов на переключение. Емкость конденсаторов С1-СЗ выбрана исходя из того, что их реактивное сопротивление должно быть значительно меньше сопротивления обмотки реле. Применены конденсаторы КБГ-МН. Возможна их замена на МБГО, МБГЧ или импортными на соответствующее напряжение. Отклонения емкости конденсаторов от номинальной не должны превышать 5 %.

Переменный резистор R1 должен быть проволочным. Его мощность зависит от условий эксплуатации автомата. Если больших “перекосов” в сети не ожидается и нужно защитить двигатель лишь от внезапного отключения одной из фаз, резистор может быть мощностью 2 Вт. Если же приходится длительное время работать на грани срабатывания, его мощность придется увеличить до 10 Вт и более.

Пускатель КМ1 – серии ПМЕ-211 с обмоткой управления на 220 В. Диоды 2Д202Р можно заменить на КД203Г, КД203Д или диодными мостами КЦ402А, КЦ402Ж, КЦ405А, КЦ405Ж. Диоды с меньшим допустимым обратным напряжением применять не рекомендуется. Они могут быть повреждены выбросами напряжения, возникающими при коммутации индуктивной нагрузки.

Как убезопасить 3-х фазный электродвигатель от пропадания одной из фаз

Вы здесь

Страницы

Вопросы задавать можно только после регистрации. Войдите или зарегистрируйтесь, пожалуйста.

Привет всем!
Как убезопасить 3-х фазный электродвигатель от пропадания одной из фаз.
Говорят есть какое то “тепловое реле”. Как его подключать какая схема?

Тепловое реле есть но его нужно подстраивать под двигатель и срабатывает оно не сразу что приводит к нагреву обмотки и старению изоляции. На много надёжней защита построенная на основе одного промежуточного реле на 380 в. и одного на 220в. Пусковые цепи соединяются последовательно через коммутирующие контакты пром. реле. Катушки реле запитаны от всех 3-х фаз и при обрыве любой из них соответствующее реле отключится что приведёт к немедленному отключению двигателя. Не смотря на появление цифровых устройств защиты двигателей, данный метод является простейшим и безотказным.

. Пусковые цепи соединяются последовательно через коммутирующие контакты пром. реле. Катушки реле запитаны от всех 3-х фаз и при обрыве любой из них соответствующее реле отключится что приведёт к немедленному отключению двигателя. .

Hunter1 – Вы бы схему человеку нарисовали – у него ведь опыта нет.

Зачем? Почему? Как?

Спасибо за ответ!
Нарисуйте пожалуйста схему и какого типа реле нужно брать.
И можно ль такой блок поставить на входе в гараж, а не непосредственно перед двигателем ( есть несколько двигателей) или надо ставить на каждый двигатель.
Максимальна нагрузка 6 кВт.

Спасибо за ответ!
Нарисуйте пожалуйста схему и какого типа реле нужно брать.
И можно ль такой блок поставить на входе в гараж, а не непосредственно перед двигателем ( есть несколько двигателей) или надо ставить на каждый двигатель.
Максимальна нагрузка 6 кВт.

Реле можно брать любого типа с нормально разомкнутыми контактами. На входе в гараж я бы не советовал ставить, хотя возможно и так. Данную схему включают в цепь управления магнитопускателем который включает двигатель или другую нагрузку. Для того что-бы собрать схему Вам понадобится магнитопускатель, кнопка пуск-стоп, одно пром, реле на 220 в. одно реле на 380 в. (если нет реле на 380 в. можно использовать три реле на 220 в.) а также соединительные провода. У реле должно быть минимум по одной паре нормально открытых контактов.

Для того чтоб нарисовать понятную для Вас схему напишите пожалуйста какой у Вас уровень подготовки в области электротехники, хотя повторюсь что схема элементарная.

Спасибо за ответ!
Нарисуйте пожалуйста схему и какого типа реле нужно брать.
И можно ль такой блок поставить на входе в гараж, а не непосредственно перед двигателем ( есть несколько двигателей) или надо ставить на каждый двигатель.
Максимальна нагрузка 6 кВт.

Реле можно брать любого типа с нормально разомкнутыми контактами. На входе в гараж я бы не советовал ставить, хотя возможно и так. Данную схему включают в цепь управления магнитопускателем который включает двигатель или другую нагрузку. Для того что-бы собрать схему Вам понадобится магнитопускатель, кнопка пуск-стоп, одно пром, реле на 220 в. одно реле на 380 в. (если нет реле на 380 в. можно использовать три реле на 220 в.) а также соединительные провода. У реле должно быть минимум по одной паре нормально открытых контактов.

Для того чтоб нарисовать понятную для Вас схему напишите пожалуйста какой у Вас уровень подготовки в области электротехники, хотя повторюсь что схема элементарная.

Добрый вечер Hunter1.
Насчет уровня подготовки скажу так: трехфазный двигатель через магнитный пускатель подключить могу, схему реверсивного вклечения двигателя нарисую, начала и концы обмоток на двигателе найду, на своем токарном станке схему прострелял нарисовал востановил, просто с реле никогда не сталкивался какой у них принцип работы, а так думаю что со схемой разберусь.

Добрый вечер Hunter1.
Насчет уровня подготовки скажу так: трехфазный двигатель через магнитный пускатель подключить могу, схему реверсивного вклечения двигателя нарисую, начала и концы обмоток на двигателе найду, на своем токарном станке схему прострелял нарисовал востановил, просто с реле никогда не сталкивался какой у них принцип работы, а так думаю что со схемой разберусь.[/quote]

Хорошо. Скоро нарисую и скину.

Вот начертил на скорую руку. Если что не понятно, спрашивайте.
Файлы:
shema_4.jpg

Hunter1 – Вы бы схему человеку нарисовали – у него ведь опыта нет.

Точно, а поскольку своего опыта у него нет, а у вас, господа советчики, видимо есть, почему бы не прикладывать к схемам и рекомендациям письменную гарантию: “Делай так, и гарантирую, что проблема будет решена надежно и безопасно”.
Иначе получается, вы здесь писанулись, человек потратит время, средства (“Специалисты” же порекомендовали. ), а в результате двигатель сгорит. Хорошо если ограничится только этим, последствия могут быть серьезнее, ну вы спецы, знаете.
А “за базар” то кто ответит?
Еще раз повторяю:
ГОСПОДА ФЕРМЕРЫ, НЕ ПОЛЬЗУЙТЕСЬ СОВЕТАМИ С ФОРУМОВ в таких серьезных и опасных вещах как Энергетика.

Никогда такого не было, и вот – опять.

Hunter1 – Вы бы схему человеку нарисовали – у него ведь опыта нет.

Точно, а поскольку своего опыта у него нет, а у вас, господа советчики, видимо есть, почему бы не прикладывать к схемам и рекомендациям письменную гарантию: “Делай так, и гарантирую, что проблема будет решена надежно и безопасно”.
Иначе получается, вы здесь писанулись, человек потратит время, средства (“Специалисты” же порекомендовали. ), а в результате двигатель сгорит. Хорошо если ограничится только этим, последствия могут быть серьезнее, ну вы спецы, знаете.
А “за базар” то кто ответит?
Еще раз повторяю:
ГОСПОДА ФЕРМЕРЫ, НЕ ПОЛЬЗУЙТЕСЬ СОВЕТАМИ С ФОРУМОВ в таких серьезных и опасных вещах как Энергетика.

Читайте также:  Защита от отгорания нуля в трехфазной сети

Если следовать Вашим советам так выходит что данный форум вообще следует закрыть так как здесь кругом одни советы. Вы бы прочитали что выше написано. По моему я задал конкретный вопрос об уровне подготовки человека попросившего совет и на основании полученного выложил ответ соответствующий уровню знаний, а судя по ответу, уровень знаний явно не начинающего дилетанта. Также схема которую я выложил предусматривает все необходимые меры безопасности и если Вы являетесь СПЕЦИАЛИСТОМ в области ЭСППиУ должны были это заметить, а если не являетесь таковым (в чём я уверен) то написанное Вами в первую очередь примените к себе. Отопление буржуйки тоже является частью того что есть ЭНЕРГЕТИКА, так что, и её уже не топить без высшего образования?

Вы правы только в одном. БЕРЕГИТЕ СЕБЯ.

Без обид.

Автоматическая защита трехфазного двигателя при отключении фазы электрической сети

Трехфазные двигатели при случайном отключении одной из фазы быстро перегреваются и выходят из строя, если их не отключить. На рисунках 1 и 2 показаны простые схемы автоматического отключения трехфазного двигателя при отключении фазы электрической сети.

В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При отключении фазы А реле Р будет обесточено, контакты Р1 разомкнуться, отключив от сети обмотку магнитного пускателя, двигатель отключится. При отключении фаз В и С обесточивается непосредственно обмотка магнитного пускателя.

В качестве дополнительного реле Р используется реле переменного тока МКУ-48.

Схема защиты аналогична первой схеме, при нажатии кнопки «Пуск» включается реле Р, контекты Р1 замыкая цепь питания катушки магнитного пускателя. Магнитный пускатель срабатывает и запускает электродвигатель. При отключении фаз В или С отключается реле Р, при обрыве фаз А или С — магнитный пускатель.

Главное отличие второй схемы от первой в том, что дополнительное реле при включенном двигателе обесточено. По материалам сайта rcl-radio.ru .

Смотрите также последние радиоэлектронные схемы

На ИМС TDA7050 можно собрать простой усилитель для наушников. Схема усилителя на TDA7050 практически не содержит внешних элементов, проста в сборке и в настройке не нуждается. Диапазон питания усилителя от 1,6 до 6 В (3-4 В рекомендуемое). Выходная мощность в стерео варианте 2*75 мВт и в мостовом варианте включения 150 мВт. Сопротивление нагрузки в стерео варианте усилителя […]

На рисунке показана схема простого преобразователя на ИМС LM2586. Основные характеристики DC-DC интегрального преобразователя LM2586: Входное напряжение от 4 до 40 В Выходное напряжение от 1,23 до 60 В Частота преобразования 75 … 125 кГц Собственный ток потребления не более 11 мА Максимальный выходной ток 3 А Схема содержит минимальный набор внешних элементов, ИМС LM2586 необходимо установить на […]

На рисунке показана схема усилителя собранного на ИМС LM2877. Усилитель имеет минимальное кол-во внешних элементов, после сборки в настройке не нуждается. Основные технические характеристики усилителя на LM2877: Напряжение питания 6 … 24 В (однополярное) или ±3 … 12 В (двухполярное) Выходная мощность 4 … 4,5 Вт на канал при напряжении питания 20 В и сопротивлении нагрузки 8 […]

Схема преобразователя основана на ИМС LT1070. Схема содержит минимальный набор внешних элементов, проста в сборке. Регулировка выходного напряжения осуществляется подбором сопротивлений R1 и R2. Дроссель L1 рекомендуемы по даташиту PE-92113 , но можно применить другой на номинальный ток 1А, индуктивностью 150 мкГн.Источник — lt1070ck.pdf

Интегральные микросхема STK082 проихзводства фирмы Sanyo выполнена в корпусе SIP10 и представляют собой усилитель мощности низкой частоты в гибридном исполнении. ИМС STK082 предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса с двухполярным питанием. В микросхемах отсутствует защита выхода от короткого замыкания в нагрузке. Основные технические характеристики: Максимальное напряжение питания ± 43 […]

На рисунке показана схема простого усилителя с выходной мощностью 5,8 Вт на канал, усилитель основан на ИМС KA2211 (Samsung). Характеристики ИМС KA2211: Максимальное напряжение питания 25 В Номинальное напряжение питания 13,2 В Рекомендуемый диапазон питающего напряжения 10…18 В Выходная мощность 5,8 Вт на канал КНИ при Rн=4 Ом при максимальной мощности 5,8 Вт … 10 % […]

ИМС MAX4295 представляет собой аудиоусилитель класса D, что дает преимущество в плане энергопотребления при работе от аккумуляторных батарей, поэтому ИМС MAX4295 идеально подойдет для контроля скорости и направления вращения миниатюрных двигателей постоянного тока. На модифицированную схему усилителя ЗЧ вместо входного аудио сигнала подается постоянное напряжение с потенциометра R1. Полное сопротивление потенциометра соответствуют максимальным оборотам двигателя, середина […]

На рисунке показана схема простого усилителя класса АВ на ИМС TDA2002. Усилитель на ИМС TDA2002 имеет минимальный набор внешних элементов, после сборки в настройке не нуждается. TDA2002 имеет защиту от КЗ и тепловую защиту. При напряжении питания 16 В и нагрузке 2 Ом усилитель может достигать до 10 Вт выходной мощности. Напряжение питания может быть в пределах […]

ИМС L5970D — импульсный DC-DC преобразователь, используется в понижающих, повышающих и инвертирующих преобразователях с использованием минимального количества внешних элементов. Основные особенности преобразователя: входное напряжение от 4.4В до 36В; низкое потребление тока в отсутствие нагрузки; внутренняя схема ограничения выходного тока; выходной ток до 1А; функция отключения при перегреве микросхемы; выходное напряжение регулируется внешним делителем от 1.2В до […]

ИМС L4971 представляет собой импульсный понижающий стабилизатор напряжения, с регулируемым выходным напряжение от 3,3 В до 50 В, при входном от 8 В до 55 В. Максимальный ток нагрузки до 1,5А. Внутренняя структура микросхемы содержит источник опорного напряжения 3.3В, функцию изменения рабочей частоты переключений до 300 кГц, мощный силовой ключ в лице n-канального полевого транзистора, […]

Книги по электронике

Пособие предназначено для руководителей малых предприятий, осуществляющих ремонт бытовой техники или ремонт квартир по заказам населения. Приводятся основные требования в области охраны труда и обеспечения его безопасности в соответствии с действующими нормативными правовыми актами по охране труда и порядок их выполнения. Может использоваться соответствующими органами исполнительной власти субъектов Российской Федерации, в том числе ведающими вопросами.

Эта книга является логическим продолжением первой книги издательств “Ремонт и Сервис 21” и “СОЛОН-ПРЕСС” (серия РЕМОНТ, выпуск 93) по теме программного ремонта сотовых телефонов. В этом издании приводятся материалы по инженерному программированию и ремонту более 120 моделей телефонов SAMSUNG и около 100 – MOTOROLA.

Защита трехфазного двигателя от пропадания одной фазы

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать – советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Читайте также:  Класс защиты 1 по электробезопасности

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Защита трехфазного электродвигателя

Рассмотрены два варианта устройства, отключающего трехфазный электродвигатель от сети при опасном для него изменении питающего напряжения, – простое релейное и сравнительно сложное на интегральных микросхемах. Устройства реагируют не только на общее повышение или понижение сетевого напряжения, но и на опасный для двигателя “перекос фаз” – изменение напряжения лишь одной из них.

Проблема защиты трехфазного электродвигателя от опасных для него колебаний сетевого напряжения особенно актуальна, если двигатель работает в отсутствие постоянно наблюдающего за ним человека (например, приводя в действие водяной насос), а также в сельской местности, где качество электрических сетей оставляет желать лучшего.

Не менее важно непрерывно контролировать температуру корпуса электродвигателя, есть немало причин, по которым он может перегреться. Самые частые – механическая перегрузка двигателя или заклинивание его вала в подшипниках.

Простейший способ защиты от пропадания или значительного понижения напряжения в одной из фаз иллюстрирует знакомая многим электрикам схема, показанная на рис. 1.

Обмотка пускателя КМ1 подключена к фазе (например, С) и нейтрали сети через нормально разомкнутые контакты реле К1.1 и К2.1. Обмотки реле подключены к двум другим фазам. В результате пропадание любого фазного напряжения приведет к отключению пускателем КМ1 электродвигателя от сети.

Обмотки пускателя и реле должны быть рассчитаны на питание переменным напряжением 220 В, 50 Гц. Если имеется пускатель с обмоткой на 380 В, ее правый по схеме вывод соединяют не с нейтралью (N) , а с одним из фазных проводов (А или В). Реле с обмотками, рассчитанными на напряжение 12. 24 В, можно воспользоваться, подключив их по схеме показанной на рис. 2.

Конденсатор С1 – К73-17. Его емкость указана для реле РСЧ52 (паспорт РС4.523.205, сопротивление обмотки 220 Ом). Если применено другое, конденсатор выбирают таким (обычно номиналом 0,47. 1,5 мкФ), чтобы через обмотку реле протекал нужный для его срабатывания ток. Показанный на схеме штриховой линией оксидный конденсатор С2 устанавливают лишь в том случае, если сработавшее реле “жужжит”. Емкость конденсатора (несколько микрофарад) выбирают минимальной, достаточной для устранения жужжания.

Схема более совершенного устройства защиты приведена на рис. 3. Оно реагирует не только на отклонение сетевого напряжения от номинального и на “перекос” фаз, но и снабжено датчиком температуры корпуса двигателя.


(нажмите для увеличения)

Три канала контроля за фазным напряжением по схеме идентичны. Поэтому рассмотрим работу только одного из них, контролирующего напряжение фазы А. Цепь R1,R4,VD2,R10,R17,C4 формирует из переменного фазного напряжения пропорциональное ему постоянное. Последнее поступает на входы двух ОУ микросхемы DA3, служащих компараторами. На инвертирующий вход нижнего по схеме компаратора с резистивного делителя R8R12 подано напряжение, задающее порог срабатывания защиты при превышении фазным напряжением допустимого значения. На инвертирующий вход второго (верхнего) компаратора подано напряжение “нижнего” порога (с резистивного делителя R7R11). Выходы компараторов соединены с входами элемента ИЛИ-НЕ DD1.1. Логический уровень на выходе этого элемента высокий, пока контролируемое фазное напряжение остается в установленных подстроечными резисторами R11 и R12 пределах.

Элемент DD2.1 объединяет выходные сигналы трех каналов контроля. Пока ни один из них не сработал, уровень на выходе этого элемента – низкий. Светодиод HL2 светится, сигнализируя об исправности трехфазной сети. Аналогично элементу DD2.1 действует элемент DD2.2, но на один из его входов дополнительно подан сигнал срабатывания узла контроля температуры. Поэтому транзистор VT1, цепь базы которого подключена к выходу элемента DD2.2 через интегрирующую цепь R22C7 и инвертор DD2.3, открыт лишь при условии, что сеть исправна и температура корпуса электродвигателя ниже допустимой.

В цепь коллектора транзистора VT1 включена обмотка реле К1. Если все в порядке, реле К1 и контактор КМ1 находятся в сработавшем состоянии и электродвигатель подключен к сети. В аварийной ситуации транзистор будет закрыт и разомкнувшиеся контакты реле К1.1 обесточат обмотку пускателя КМ1, который отключит электродвигатель. Упомянутая выше цепь R22C7, задерживая срабатывание защиты на 2. 4 с, предотвращает реакцию на кратковременные броски сетевого напряжения.

Датчиком температуры корпуса электродвигателя служит терморезистор RK1. С помощью ОУ DA6 напряжение, падающее на терморезисторе, сравнивают с образцовым, поступающим на инвертирующий вход ОУ с резистивного делителя R9R16. В случае перегрева электродвигателя сопротивление терморезистора и падение напряжения на нем уменьшаются настолько, что высокий логический уровень на выходе DA6 сменяется низким, приводя к гашению светодиода HL1 и к отключению электродвигателя пускателем КМ 1.

Длина проводов, соединяющих терморезистор RK1 с защитным устройством, может достигать 2. 3 м. Конденсатор С1 устраняет наведенные на эти провода помехи. Если применен терморезистор с номинальньным сопротивлением, отличающимся от указанного на схеме, необходимо подобрать резистор R15 таким образом, чтобы при нагретом до температуры срабатывания терморезисторе напряжение на инвертирующем входе DA6 не опускалось ниже 2 В. При меньшем значении параметры включенного по приведенной схеме ОУ КР140УД608 заметно ухудшаются. Это же касается напряжения, подаваемого на входы ОУ микросхем DA3-DA5.

Узел питания защитного устройства состоит из понижающего трансформатора Т1, диодного моста VD1, конденсатора фильтра С2 и двух интегральных стабилизаторов – DA1 и DA2. Напряжением 9 В с выхода первого стабилизатора питают микросхемы DA3-DA6, DD1, DD2. Потребляемый ток не превышает 30 мА поэтому теплоотвод микросхеме DA1 не требуется. Из напряжения 5 В, стабилизированного микросхемой DA2, получают образцовые уровни напряжения для установки порогов срабатывания защиты.

Устройство собрано на печатной плате (рис. 4) размерами 80×75 мм из двусторонне фольгированного стеклотекстолита. На ней расположены все элементы, за исключением трансформатора Т1, реле К1 с диодом VD5, подключенным непосредственно к выводам, и, конечно, пускателя КМ1.


(нажмите для увеличения)

Резисторы R1-R3 – МЛТ-0,5, остальные постоянные – С2-23 0,125 Вт или МЛТ-0,125. Подстроечные резисторы R9, R11, R12 -СПЗ-19а. Их можно заменить на другие малогабаритные. Терморезистор – ММТ-4, СТ1 илиТР-4. Оксидные конденсаторы – К50-35 или аналогичные импортные. Вместо транзистора КТ972А подойдут КТ972Б или импортный 2SD1111.

Сдвоенные ОУ КМ140УД20 можно заменить на КР140УД20А, КР140УД20Б, а также на LM358N, КР574УД2А или (изменив печатную плату) на различные модификации одиночных ОУ К140УД6, К140УД7. Замена стабилизатора 7809 – КР142ЕН8А, КР142ЕН8Г

Реле К1 – импортное KR8S фирмы “Elesta”. Подойдет и другое с рабочим напряжением не более 24 В и контактами, способными коммутировать напряжение 380 В. Трансформатор Т1 – любой со вторичной обмоткой на напряжение 18. 20 В, обеспечивающий ток, необходимый для питания реле.

Налаживание защитного устройства сводится к установке порогов срабатывания компараторов. Временно соединив входы А-С, подают на них относительно цепи N переменное напряжение от регулируемого автотрансформатора. Установив здесь 180 В, поочередно измеряют вольтметром постоянного тока значения напряжения на конденсаторах С4-С6. Если они различаются более чем на 0,1 В, необходимо устранить разброс, подбирая номиналы резисторов R1-R3 или R4-R6.

Вращая движок подстроенного резистора R11, добиваются зажигания светодиода HL2. Если это сделать не удается, измените положение движка подстроенного резистора R12 и повторите попытку. Далее с помощью автотрансформатора повышают до 250 В напряжение на соединенных входах защитного устройства. Светодиод HL2 должен погаснуть. Перемещая движок подстроенного резистора R12, вновь зажигают его. Остается убедиться, что светодиод HL2 светится, пока входное напряжение в пределах 180. 250 В, и гаснет, если оно вне этого интервала. При необходимости регулировку повторяют.

Если воспользоваться автотрансформатором не удается, пороги срабатывания защиты можно установить приблизительно. Измеренное высокоомным вольтметром напряжение на движке подстроечного резистора R11 должно быть равно 3,16 В, а на движке R12 – 4,44 В. Приведенные значения справедливы, если сопротивление каждого из резисторов R1-R6, R10, R13, R14, R17-R19 в точности равно указанному на схеме номиналу.

Прежде чем регулировать канал контроля температуры, переводят движок подстроечного резистора R9 в левое по схеме положение. В результате должен зажечься светодиод HL1. Нагрев терморезистор RK1 до необходимой температуры, вращают движок упомянутого резистора, пока не погаснет светодиод. Как только терморезистор немного остынет, светодиод должен зажечься вновь. Если светятся оба светодиода (HL1 и HL2), должны сработать реле К1 и пускатель КМ1.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

Читайте далее:
Ссылка на основную публикацию
Adblock
detector