Защитное заземление организация контроля - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Защитное заземление организация контроля

Защитное заземление организация контроля

Энергия и энергетика

Возобновляемая энергия в России

Энергетические компании

– Двадцатка самых дорогих энергетических компаний мира
– Крупнейшие нефтегазовые компании мира по объему добычи
– Крупнейшие электроэнергетические компании России

Новости и заметки

Контроль защитного заземления

Защитное заземление – преднамеренное соединение с землей частей оборудования, не находящихся под напряжением в нормальных условиях эксплуатации, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.

Согласно «Правилам устройства электроустановок» сопротивление защитного заземления в любое время года не должно превышать: 10 Ом при мощности трансформатора (генератора) Nтр 100 кВт × А; 0,5 Ом – в установках напряжением выше 1000 В с большими токами замыкания на землю (более 500А).

Необходимо рассчитать заземляющее устройство для заземления электродвигателя серии 4А напряжением U = 380 В в трехфазной сети с изолированной нейтралью при следующих исходных данных: грунт – суглинок с удельным сопротивлением r = 100 Ом × м; в качестве заземлителей приняты стальные трубы диаметром d = 0,02 м и длиной l = 1,5 м, располагаемые вертикально и соединенные на сварке стальной полосой 40*4 мм; мощность электродвигателя серии А4200М2 U = 30 кВт, n = 3000 мин-1; мощность трансформатора принята

250 кВ × А, требуемое по нормам допускаемое сопротивление заземляю

щего устройства [r3] £ 4 Ом.

Рисунок 11.1 – Принципиальная схема защитного заземления

По схеме защитного заземления показанного на рисунке 11.1 определяем сопротивление одиночного вертикального заземлителя RB, Ом, по формуле:

где: t – расстояние от середины заземлителя до поверхности грунта, м;

l, d – длина и диаметр стержневого заземлителя, м.

Расчетное удельное сопротивление грунта рассчитывается по формуле:

где: y – коэффициент сезонности, учитывающий возможность повышения сопротивления грунта в течении года

Согласно [11] принимаем y = 1,7 для I климатической зоны. Тогда:

Определяем сопротивление стальной полосы, соединяющей стержневые заземлители:

где: l – длина полосы, м;

t – расстояние от полосы до поверхности земли, м

Определяем расчетное удельное сопротивление грунта r’расч при использовании соединительной полосы в виде горизонтального электрода длиной 50м. При длине полосы в 50м [11], y’ = 5,9. Тогда:

Определяем ориентировочное число n одиночных стержневых заземлителей по формуле:

Принимаем расположение вертикальных заземлителей по контуру с расстоянием между смежными заземлителями равным 2 l. По таблице 3,2 и 3,3 [11] найдем действительные значения коэффициента использования hВ и hГ, исходя из принятой схемы размещения вертикальных заземлителей, hВ = 0,66, hГ = 0,39.

Определяем необходимое количество вертикальных заземлителей по формуле:

Вычисляем общее расчетное сопротивление заземляющего устройства R с учетом соединительной полосы:

Защитное заземление организация контроля

Энергия и энергетика

Возобновляемая энергия в России

Энергетические компании

– Двадцатка самых дорогих энергетических компаний мира
– Крупнейшие нефтегазовые компании мира по объему добычи
– Крупнейшие электроэнергетические компании России

Новости и заметки

Контроль защитного заземления

Защитное заземление – преднамеренное соединение с землей частей оборудования, не находящихся под напряжением в нормальных условиях эксплуатации, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.

Согласно «Правилам устройства электроустановок» сопротивление защитного заземления в любое время года не должно превышать: 10 Ом при мощности трансформатора (генератора) Nтр 100 кВт × А; 0,5 Ом – в установках напряжением выше 1000 В с большими токами замыкания на землю (более 500А).

Необходимо рассчитать заземляющее устройство для заземления электродвигателя серии 4А напряжением U = 380 В в трехфазной сети с изолированной нейтралью при следующих исходных данных: грунт – суглинок с удельным сопротивлением r = 100 Ом × м; в качестве заземлителей приняты стальные трубы диаметром d = 0,02 м и длиной l = 1,5 м, располагаемые вертикально и соединенные на сварке стальной полосой 40*4 мм; мощность электродвигателя серии А4200М2 U = 30 кВт, n = 3000 мин-1; мощность трансформатора принята

250 кВ × А, требуемое по нормам допускаемое сопротивление заземляю

щего устройства [r3] £ 4 Ом.

Рисунок 11.1 – Принципиальная схема защитного заземления

По схеме защитного заземления показанного на рисунке 11.1 определяем сопротивление одиночного вертикального заземлителя RB, Ом, по формуле:

где: t – расстояние от середины заземлителя до поверхности грунта, м;

l, d – длина и диаметр стержневого заземлителя, м.

Расчетное удельное сопротивление грунта рассчитывается по формуле:

где: y – коэффициент сезонности, учитывающий возможность повышения сопротивления грунта в течении года

Согласно [11] принимаем y = 1,7 для I климатической зоны. Тогда:

Определяем сопротивление стальной полосы, соединяющей стержневые заземлители:

где: l – длина полосы, м;

t – расстояние от полосы до поверхности земли, м

Определяем расчетное удельное сопротивление грунта r’расч при использовании соединительной полосы в виде горизонтального электрода длиной 50м. При длине полосы в 50м [11], y’ = 5,9. Тогда:

Определяем ориентировочное число n одиночных стержневых заземлителей по формуле:

Принимаем расположение вертикальных заземлителей по контуру с расстоянием между смежными заземлителями равным 2 l. По таблице 3,2 и 3,3 [11] найдем действительные значения коэффициента использования hВ и hГ, исходя из принятой схемы размещения вертикальных заземлителей, hВ = 0,66, hГ = 0,39.

Определяем необходимое количество вертикальных заземлителей по формуле:

Вычисляем общее расчетное сопротивление заземляющего устройства R с учетом соединительной полосы:

Устройство, принцип работы и схемы защитного заземления

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Читайте также:  Принцип работы газовой защиты трансформатора

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).
      Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

Важно! При выборе схемы TN-C-S в качестве основы производства заземляющих работ важно учесть наличие глухозаземленной нейтрали. Получается, что ГЗШ дома соединяется с заземлением самого трансформатора, питающего объект.

    Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:

  • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
  • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
  • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Защитное заземление

МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

Меры защиты от поражения электрическим током:

1. Организационные: инструктаж по ТБ, правильная организация рабочего места, применение средств индивидуальной защиты, сигнализация и др.

2. Организационно-технические: изоляция и ограждение токоведу-щих частей электрооборудования, применение блокировок, безопасных режимов работы сети, защитная изоляция и др.

3. Технические меры защиты разделяют на 2 группы:

К первой относят сверхнизкие (малые) напряжения, контроль изоляции, усиленную изоляцию, двойную изоляцию, защитное заземление и др. Эти меры обеспечивают защиту человека от поражения током путем снижения напряжения прикосновения или уменьшения тока, проходящего через тело при однофазном прикосновении до безопасных значений.

Ко второй относят зануление и защитное отключение, защищающие человека при попадании его под напряжение путем быстрого отключения электрического тока.

Применение сверхнизких напряжений

В ПУЭ – VII издание 2002 г. дается следующее определение сверхнизкого напряжения. Сверхнизкое (малое) напряжение (СНН) – напряжение, не превышающее 50 В переменного и 120 В постоянного тока. Сверхнизкие напряжения переменного тока получают с помощью понижающих трансформаторов.

В некоторых установках применяют напряжения ещё более низкие, например в медицинской технике, при водолазных работах – 12 В, в детских игрушках – до 6 В.

Контроль изоляции

Контроль изоляции – особо остро стоит при эксплуатации электрических сетей, работающих в режиме изолированной нейтрали. При однофазном прикосновении ток, протекающий через человека (Ih) равен:

т.е. в этих сетях условия электрической безопасности определяются сопротивлениями изоляции (Rф) и емкостью относительно земли (Сф). Т.е. при поддержании параметров сети Rф и Сф на соответствующей нормале уровне можно добиться обеспечения электробезопасных условий эксплуатации сети. Например, если в сети с изолированной нейтрали с фазным напряжениям Uф = 220 В обеспечить сопротивление изоляции не меньше 62 кОм, то ток через человека при однофазном прикосновении не превысит значения длительно допустимого тока, т.е. Ih

Контроль изоляции осуществляется:

а) при приемо-сдаточных испытаниях, которые проводятся при вводе в эксплуатацию вновь смонтированных или вышедших из ремонта электрических устройств. Объем и нормы испытаний регламентируются ПУЭ, ПТБ и ПТЭ;

б) периодический контроль изоляции – измерение её сопротивления периодически в сроки, установленные Правилами или в случае обнаружения дефектов. Измерение согласно Правилам должно производиться на отключенной установке мегаомметром;

в) постоянный контроль изоляции – измерение сопротивления изоляции под рабочим напряжением в течение всего времени работы электроустановки без автоматического отключения. Отсчет сопротивления изоляции производится по шкале прибора постоянного контроля изоляции (ПКИ). При снижении сопротивления изоляции до предельно допустимого и ниже прибор подает звуковой или световой сигнал или оба сигнала вместе.

Двойная изоляция

В ПУЭ дается следующее определение изоляции.

Основная изоляция – изоляция токоведущих частей, обеспечивающая, в том числе защиту от прямого прикосновения.

Дополнительная изоляция – независимая изоляция в электроуста-новках до 1 кВ, выполняемая дополнительно к основной изоляции для защиты при косвенном прикосновении.

Двойная изоляция является надежным и перспективным средством защиты человека от поражения электрическим током. Электрическое оборудование, изготовленное с двойной изоляцией, маркируется знаком. Особенно эффективно защитное действие двойной изоляции в электроинструменте.

Усиленная изоляция – изоляция, обеспечивающая степень защиты от поражения электрическим током, равноценную двойной изоляции.

Защитное заземление

Защитное заземление – это преднамеренное электрическое соединение с заземляющим устройством какой-либо точки сети, электроустановки или оборудования в целях электробезопасности (например, металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании фазы на корпус при повреждении изоляции). Его применяют в сетях с изолированной нейтралью напряжением до 1000 В и в сетях выше 1000 В независимо от режима нейтрали. Суть заземления заключается в том, что все металлические корпуса и конструкции, на которых может появиться напряжения, заземляют, т.е. присоединяют к земле через малое сопротивления заземления R3. Оно во много раз меньше сопротивления человека Rh (рис. 1).

Рис. 1. Схема защитного заземления

В случае замыкания на корпус практически весь ток замыкается на землю через заземлитель. Напряжение корпуса относительно земли Uк = I3R3, где I3 – ток замыкания на землю:

Напряжение прикосновения в более неблагоприятном случае будет UпрUк, тогда

отсюда следует, что через человека будет тем меньше, чем меньше R3 и чем больше Rh и Z.

Согласно ПУЭ сопротивление заземления в электрических установках напряжением до 1000 В не должно превышать 4 Ом. При мощности подстанции до 100 кВ допускается R3 ≤ 10 Ом.

Заземлители бывают искусственные – специально выполненные для цели заземления (металлические стержни, уголки, трубки, полосы) и естественные – сторонняя проводящая часть, находящаяся в электрическом контакте с землей (металлоконструкции зданий и сооружений, железобетонные фундаменты, некоторые коммуникации, например, металлические трубы водопровода и т.д.) Не следует использовать в качестве естественных заземлителей трубопроводы горючих жидкостей, канализацию и центральное отопление.

По способу расположения относительно заземленного оборудования различают заземлители выносные – корпуса не находятся в зоне растекания тока; контурные – выполняются по периметру и внутри защищаемой территории, а также сосредоточенные.

Оценка эффективности действия защитного заземления производится сравнением значений тока Ih, вычисленных без учета заземления и с учетом заземления.

Определить: эффективность защитного заземления в трехфазной трехпроводной сети с изолированной нейтралью

Вывод: защитное заземление эффективно.

Исследуем эффективность защитного заземления в трехфазной четырехпроводной сети с глухозаземленной нейтралью по схеме (рис. 2).

Рис. 2. Схема заземления

Rо – сопротивление заземленной нейтрали;

R3 – сопротивление заземленной электрической установки;

Uк – напряжение корпуса электрической установки относительно земли.

Из схемы видно, что в случае замыкания фазы на корпус электрической установки ток замыкания I3 последовательно проходит через сопротивление R3 и Rо и определяется выражением:

Определить: эффективность защитного заземления в трехфазной четырехпроводной сети с глухозаземленной нейтралью

Вывод: защитное заземление неэффективно, т.к. Ih – смертельно опасен для человека.

Основной мерой защиты от замыкания на корпус в электрических сетях напряжением до 1000 кВ с глухозаземленной нейтралью является зануление.

|следующая лекция ==>
Перемещения и деформации.|Организация логистической службы на промышленном предприятии

Дата добавления: 2017-09-01 ; просмотров: 762 ;

Защитное заземление и зануление

  • Опасные и вредные производственные факторы
  • Производственный шум
  • Производственная вибрация
  • Источники электромагнитных полей и излучений
  • Влияние электромагнитных излучений на организм
  • Уровни и нормы электромагнитных излучений

Защитное заземление

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления — снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

Применяется также заземление электрооборудования, зданий и сооружений для защиты от действия атмосферного электричества.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

Заземляющее устройство

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Различают естественные и искусственные заземлители.

Для заземляющих устройств в первую очередь должны быть использованы естественные заземлители:

  • водопроводные трубы, проложенные в земле;
  • металлические конструкции зданий и сооружений, имеющие
  • надежное соединение с землей;
  • металлические оболочки кабелей (кроме алюминиевых);
  • обсадные трубы артезианских скважин.

Запрещается в качестве заземлителей использовать трубопроводы с горючими жидкостями и газами, трубы теплотрасс.

Естественные заземлители должны иметь присоединение к заземляющей сети не менее чем в двух разных местах.

В качестве искусственных заземлителей применяют:

  • стальные трубы диаметром 3-5 см, толщиной стенок 3,5 мм,
  • длиной 2-3 м;
  • полосовую сталь толщиной не менее 4 мм;
  • угловую сталь толщиной не менее 4 мм;
  • прутковую сталь диаметром не менее 10 мм, длиной до 10 м и более.

Для искусственных заземлителей в агрессивных почвах (щелочных, кислых и др.), где они подвергаются усиленной коррозии, применяют медь, омедненный или оцинкованный металл.

В качестве искусственных заземлителей нельзя применять алюминиевые оболочки кабелей, а также голые алюминиевые проводники, так как в почве они окисляются, а окись алюминия — это изолятор.

Каждый отдельный проводник, находящийся в контакте с землей, называется одиночным заземлителем, или электродом. Если заземли- тель состоит из нескольких электродов, соединенных между собой параллельно, он называется групповым заземлителем.

Для погружения в землю вертикальных электродов предварительно роют траншею глубиной 0,7-0,8 м, после чего забивают трубы или уголки с помощью механизмов. Стальные стержни диаметром 10-12 мм заглубляют в землю с помощью специального приспособления, а более длинные — с помощью вибратора. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой методом сварки.

Устройство защитного заземления может быть осуществлено двумя способами: контурным расположением заземляющих проводников и выносным.

При контурном размещении заземлителей обеспечивается выравнивание потенциалов при однофазном замыкании на землю. Кроме того, благодаря взаимному влиянию заземлителей уменьшается напряжение прикосновения и напряжение шага в защищаемой зоне. Выносные заземления этими свойствами не обладают. Зато при выносном способе размещения есть выбор места для заглубления заземлителей.

В помещениях заземляющие проводники следует располагать таким образом, чтобы они были доступны для осмотра и надежно защищены от механических повреждений. На полу помещений заземляющие проводники укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также с повышенной влажностью заземляющие проводники прокладывают вдоль стен на скобах в 10 мм от стены.

Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается .

Сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю.

Величина сопротивления заземлителя зависит от удельного сопротивления грунта, в котором заземлитель находится; типа размеров и расположения элементов, из которых заземлитель выполнен; количества и взаимного расположения электродов.

Величина сопротивления заземлителей может изменяться в несколько раз в зависимости от времени года. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое время.

Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

В установках свыше 1000 В допускается сопротивление заземления R3Безопасность жизнедеятельности

Читайте далее:
Ссылка на основную публикацию
Adblock
detector