Допустимое сопротивление контура заземления - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Допустимое сопротивление контура заземления

Сопротивление заземления

Сопротивление заземления (сопротивление растеканиЮ электрического тока) определяется как величина “противодействия” растеканию электрического тока в земле, поступающего в нее через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай – нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании “вредных” электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

    для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице “Заземление дома”.

    при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

Подробнее об этом на странице “Заземление газового котла / газопровода”.

для заземления, использующегося для подключения молниеприемников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

Подробнее об этом на странице “Молниезащита и заземление”.

  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом
  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • Приведенные выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
    не более 100 Ом*м (например, глина / суглинки).

    Если грунт имеет более высокое удельное электрическое сопротивление – то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

    Например, при песчаных грунтах с удельным сопротивлением
    500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз – до 150 Ом (вместо 30 Ом).

    Расчет сопротивления заземления

    Для расчета сопротивления заземления существуют специальные формулы и методики, описывающие зависимости от описанных факторов. Они представлены на странице “Расчет заземления”.

    Качество заземления

    Сопротивление заземления является основным качественным показателем заземлителя и напрямую зависит от:

    • удельного сопротивления грунта
    • конфигурации заземлителя, в частности: площади электрического контакта электродов заземлителя с грунтом

    Удельное сопротивление грунта

    Параметр определяет собой уровень “электропроводности” земли как проводника = как хорошо будет растекаться в такой среде электрический ток, поступающий от заземлителя. Чем меньший размер будет иметь эта величина, тем меньше будет сопротивление заземления.

    Удельное электрическое сопротивление грунта (Ом*м) – это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, его влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

    Обычно используется таблица ориентировочных величин “удельное сопротивление грунта”, т.к. его точное измерение возможно только в ходе проведения специальных геологических изыскательных работ.

    Конфигурация заземлителя

    Сопротивление заземления напрямую зависит от площади электрического контакта электродов заземлителя с грунтом, которая должна быть как можно большей. Чем больше площадь поверхности заземлителя, тем меньше сопротивление заземления.

    Чаще всего, из-за наименьшей сложности монтажа, в роли заземлителя используется вертикальный электрод в виде стержня/трубы/уголка.

    Для увеличения площади контакта заземлителя с грунтом:

    • увеличивается длина (глубина) электрода
    • используется несколько соединенных вместе коротких электродов, размещенных на некотором расстоянии друг от друга (контур заземления). В таком случае площади единичных электродов просто складываются вместе, что подробно описано на отдельной странице о расчете заземления.

    Различные отраслевые нормы

    Сопротивление заземления для кабелей городской телефонной сети с медными жилами (из ОСТ 45.82-96, п. 8)

    Для металлических экранов и оболочек кабелей приняты следующие значения (зависимость от удельного электрического сопротивления грунта (УЭС)):

    Допустимое сопротивление контура заземления

    Расчет защитного заземления

    В технической литературе часто рассказывается про заземление и зануление. Действительно, вопрос о заземлении в домах и квартирах встал в нашей стране относительно недавно. Еще когда бригады коммунистов электрифицировали страну, в деревенские домики подводили только фазу и ноль. Про провод заземления умалчивали. Во-первых, экономили алюминий как стратегический металл для самолетов, а во-вторых, мало кого заботили проблемы с защитой населения от поражения электрическим током, а в-третьих, не думали о заземлении как о эффективной мере защиты людей. Прошло достаточно времени, чтобы исчезли коммунисты, а вместе с ними и распалась страна, в которой они правили, но памятники, оставшиеся после них, все еще стоят. Памятники стоят, а дома разрушаются.

    В нашим домах заземлены только трубы водопровода, канализации и газопровода, а также поэтажные щитки. При этом трубы газопровода для заземления не подходят из-за взрывчатого газа, который по ним летит. Трубы канализации для заземления также использовать нельзя. Хоть канализация сплошь из чугуна, но стыки чугунных труб заделаны цементом, который является плохим проводником. Трубы водопровода вроде как являются неплохим заземлением, но нужно учитывать, что трубы прокладывают не в земле, а в слое изоляции в специальных каналах. Самое надежное заземление – от распределительного этажного щита.

    На предприятиях все изначально делали грамотно и заземляли все, что можно. Кроме заземления на предприятиях используется зануление. Многие ошибочно считают, что зануление – это проводок в розетке от нулевого провода к заземляющему контакту. Понятия “заземление” и “зануление” тесно связаны с понятием нейтрали.

    Нейтраль – точка схождения трех фаз через обмотки в трансформаторе, соединенных звездой. Если эту точку соединить с заземлителями, то образуется глухозаземленная нейтраль трансформатора, и общую систему называют заземленной. Если к этой точке приварить шину и соединить ее со всеми приборам и аппаратам, то оборудование окажется заземленным.

    Если нейтраль соединить с нулевой шиной (без заземлителей), то образуется изолированная нейтраль трансформатора, и общую систему называют зануленной. Если эту шину соединить со всеми приборами и аппаратами, то оборудование окажется зануленным.

    Идея в том, что по заземленному или зануленному проводнику течет ток только при перекосе фаз, но это для трансформатора и при аварийных режимах работы. Нельзя выбирать – занулять или заземлять оборудование. Это сделано уже на подстанции. Обычно используется глухозаземленная нейтраль.

    Если к примеру обмотка двигателя стиральной машины разрушилась и появилось сопротивление между корпусом и обмоткой, то на корпусе стиральной машины будет потенциал, который можно обнаружить индикаторной отверткой. Если машина не заземлена, то при касании корпуса потенциал машины станет потенциалом вашей руки, а т.к. ванная, где находится машина, является помещением особо опасным с точки зрения поражения током и следовательно пол является токопроводящим, нога приобретет нулевой потенциал и значит вы получите удар напряжением, пропорциональным потенциалу руки. Если машину заземлить, то в теории сработает автоматический выключатель защиты. Если машину занулить, то потенциал растечется вокруг всей машины и при касании потенциалы руки и ноги будут одинаковыми. Только надо учитывать, что ток растекается вокруг и при шагании ноги оказываются под разными потенциалами. И, конечно, можно получить удар напряжением.

    Критерии применения заземления

    Защитное заземление — преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением.

    Защитное заземление применяется в сетях напряжением до 1000 В переменного тока – трёхфазные трехпроводные с глухозаземленной нейтралью; однофазные двухпроводные, изолированные от земли; двухпроводные сети постоянного тока с изолированной средней точкой обмоток источника тока; в сетях выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

    Заземление обязательно во всех электроустановках при напряжении 380 В и выше переменного тока, 440 В и выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках при напряжении 42 В и выше переменного тока, 110 В и выше постоянного тока; при любых напряжениях во взрывоопасных помещениях.

    В зависимости от места размещения заземлителей относительно заземляющего оборудования различают два типа заземляющего устройств – выносное и контурное.

    При выносном заземляющем устройстве заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование.

    При контурном заземляющем устройстве электроды заземлителя размещают по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки.

    В открытых электроустановках корпуса присоединяют непосредственно к заземлителю проводами. В зданиях прокладывается магистраль заземления, к которой присоединяют заземляющие провода. Магистраль заземления соединяют с заземлителем не менее чем в двух местах.

    В качестве заземлителей в первую очередь следует использовать естественные заземлители в виде проложенных под землёй металлических коммуникаций (за исключением трубопроводов для горючих и взрывчатых веществ, труб теплотрасс), металлических конструкций зданий, соединённых с землёй, свинцовых оболочек кабелей, обсадных труб артезианских колодцев, скважин, шурфов и т.д.

    В качестве естественных заземлителей подстанций и распределительных устройств рекомендуется использовать заземлители опор отходящих воздушных линий электропередачи, соединённых с заземляющим устройством подстанций или распределительным устройством с помощью грозозащитных тросов линий.

    Если сопротивление естественных заземлителей Rз удовлетворяет требуемым нормам, то устройство искусственных заземлителей не требуется. Но это можно только измерить. Посчитать сопротивление естественных заземлителей нельзя.

    Когда естественные заземлители отсутствуют или использование их не даёт нужных результатов, применяют искусственные заземлители – стержни из угловой стали размером 50Х50, 60Х60, 75Х75 мм с толщиной стенки не менее 4 мм, длиной 2,5 — 3 м; стальные трубы диаметром 50—60 мм, длиной 2,5 — 3 м с толщиной стенки не менее 3,5 мм; прутковая сталь диаметром не менее 10 мм, длиной до 10 м и более.

    Заземлители забивают в ряд или по контуру на такую глубину, при которой от верхнего конца заземлителя до поверхности земли остаётся 0,5 — 0,8 м. Расстояние между вертикальными заземлителями должно быть не менее 2,5—3 м.

    Для соединения вертикальных заземлителей между собой применяют стальные полосы толщиной не менее 4 мм и сечением не менее 48 кв.мм или стальной провод диаметром не менее 6 мм. Полосы (горизонтальные заземлители) соединяют с вертикальными заземлителями сваркой. Место сварки обмазывается битумом для влагоизоляции.

    Магистрали заземления внутри зданий с электроустановками напряжением до 1000 В выполняют стальной полосой сечением не менее 100 кв.мм или сталью круглого сечения той же проводимости. Ответвления от магистрали к электроустановкам выполняют стальной полосой сечением не менее 24 кв.мм или круглой сталью диаметром не менее 5 мм.

    Нормируемые сопротивления заземляющих устройств приведены в табл.1.

    Таблица 1. Допустимые сопротивления заземляющего устройства в электроустановках до и выше 1000 В

    Наибольшие допустимые значения Rз, Ом

    Характеристика электроустановок

    Rз Rз, то необходимо устройство искусственного заземления.

    4. Определяют удельное сопротивление грунта ρ из таблицы 2. При производстве расчётов эти значения должны умножаться на коэффициент сезонности, зависящий от климатических зон и вида заземлителя (таблица 3).

    Таблица 2. Приближенные значения удельных сопротивлений грунтов и воды p, Ом•м

    Наименование грунта

    Удельное сопротивление, Ом•м

    Норма сопротивления контура заземления

    Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

    Какие бывают испытания?

    Начну с того, что поясню, какие бывают испытания. Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

    И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

    Почему спорят специалисты?

    Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

    Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

    Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

    Какие нормы?

    1. Контур заземления для электроустановки напряжением до 1000 Вольт:

    ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

    ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления – 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

    2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

    ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

    ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

    В электроустановке 3 – 35 кВ сетей с изолированной нейтралью – 250/Ip, но не более 10 Ом, где Ip – расчетный ток замыкания на землю.

    3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

    ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

    ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

    А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 – 20 кВ в
    населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

    Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

    Подведём итог

    Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

    Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

    Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

    Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

    Измерение сопротивления контура заземления

    При использовании электрических приборов всегда существует риск поражения электрическим током. Эта вероятность происходит из свойств упорядоченного потока заряженных частиц: он проходит через тот участок цепи, в котором сопротивление имеет минимальное значения. В разное время производители приборов и комплектующих пытались бороться с этим и обезопасить человека от вредного или даже смертельного воздействия тока. Но в конечном итоге наиболее простым и надежным остается заземление.

    Заземление применяется на промышленных предприятиях и в загородных домах. Особую роль оно играет в случае, когда мощность прибора превышает критические значения. Человеку достаточно получить удар силой 0.1 ампера, чтобы гарантированно погибнуть. Также не стоит забывать, что даже исправное оборудование может служить источником опасности. Это может случиться из-за разряда молнии и по некоторым другим причинам. Следовательно, к вопросу установки заземления стоит подходить ответственно и учитывать все нюансы.

    Испытания заземления

    Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

    Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

    Чем измеряют заземление

    Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

    Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

    Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

    Как нужно измерять сопротивление

    Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

    В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

    1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
    2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
    3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

    Нормы для каждого из типов

    Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

    1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
    2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
    3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
    • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
    • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
    • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
    • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

    Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

    От чего зависит сопротивление заземления

    Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

    1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
    2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
    3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

    Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

    Формула расчета

    Формула расчета сопротивления заземления одиночного вертикального заземлителя:

    где:
    ρ — сопротивление грунта на единицу длины (Ом×м)
    L — протяженность заземлителя (в метрах)
    d — ширина заземлителя (в метрах)
    T — расстояние от поверхности земли до середины заземлителя (в метрах)

    Для электролитического заземления:

    Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

    ρ — сопротивление грунта на единицу длины (Ом×м);
    L — протяженность заземлителя (в метрах);
    d — ширина заземлителя (в метрах);
    T — расстояние от поверхности земли до середины заземлителя (в метрах);
    С — относительное содержание электролита в окружающем грунте.

    Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

    Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

    Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

    Итоги и выводы

    Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

    Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

    Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

    Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

    Видео по теме

    Сопротивление заземления.

    Сопротивление заземления (сопротивление растеканию электрического тока) – величина “противодействия” растеканию электрического тока, поступающего в землю через заземлитель.

    Величина измерения сопротивления заземления – Ом и оно должно быть минимально низким по значению. Идеальным случаем считается, если величина будет нулевая, это означает при пропускании “вредных” электротоков какое-либо сопротивление отсутствует, что гарантирует ПОЛНОЕ поглощение их землей. Так как достигнуть идеала практически невозможно, то вся электроника и электрооборудование создаются на основе некоторых нормированных величин сопротивления заземления равно 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

    Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

    С подключением к электросетям имеющим 220 Вольт / 380 Вольт, заземление необходимо иметь для частных домов с рекомендованным сопротивлением не больше, чем 30 Ом.

    Согласно ПУЭ 1.7.101, не должно превышать 4 Ом при подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора). Без проведения каких-либо дополнительных мероприятий выполняется данное условие, при правильном заземлении источника тока (генератора или трансформатора).

    Выполняться должно стандартное требование для заземления дома при выполнении подключения к дому газопровода, но необходимо выполнять локальное заземление с сопротивлением не более 10 Ом, из-за использования опасного типа оборудования (для всех повторных заземлений ПУЭ 1.7.103).

    Сопротивление заземления быть должно не больше чем 10 Ом (РД 34.21.122-87, п. 8) для заземления, которое используется при подключении молниеприемников.

    Исходя из ПУЭ 1.7.101, требуется не более чем 2, 4 и 8 Ом сопротивление заземления для источника тока (генератора или трансформатора), соответственно при линейных напряжениях источника трехфазного тока: 660, 380 и 220 В или источника однофазного тока: 380, 220 и 127 В.

    В устройствах защиты воздушных линий связи (например, радиочастотный кабель или локальная сеть на основе медного кабеля) сопротивление заземления к которому подключаются газовые разрядники должно быть не более 2 Ом, это необходимо для уверенного их срабатывания. Также встречаются экземпляры и с требованием значения в 4 Ом.

    Заземление при выполнении подключения телекоммуникационного оборудования, иметь сопротивление должно не больше 2 или 4 Ом.

    Сопротивление растеканию токов для подстанции не должно превышать 0,5 Ом (ПУЭ 1.7.90).

    Но справедливы приведенные выше нормы сопротивления заземления только для нормальных грунтов, имеющих удельное электрическое сопротивление не превышающее 100 Ом*м (глина или суглинки).

    Однако, если грунт обладает более высоким удельным электрическим сопротивлением, то очень часто (но не всегда) повышается минимальное значение сопротивление заземления на величину равную 0,01 от удельного сопротивления грунта.

    Например, с удельным сопротивлением в 500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S при песчаных грунтах, повышается в 5 раз, вместо 30 Ом, оно становится 150 Ом.

    Для произведения расчета сопротивления заземления были разработаны специальные методики и формулы, которые описывают зависимости от приведенных факторов.

    Основным качественным показателем заземлителя является сопротивление заземления и зависит оно напрямую от следующих факторов:

    1. Удельного сопротивления грунта

    2. Конфигурации заземлителя, в частности от площади электрического контакта электродов заземлителя с грунтом

    Удельное сопротивление грунта.

    Определяет собой удельное сопротивление грунта уровень “электропроводности” земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. Сопротивление заземления тем меньшее значение будет иметь, чем у этой величины будет меньший размер.

    Удельное электрическое сопротивление грунта (Ом*м) – измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

    Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин – “удельное сопротивление грунта”.

    Конфигурация заземлителя.

    Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

    В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

    Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

    • Увеличить длину (глубину) электрода.
    • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

    Площади единичных электродов в таком случае просто складываются вместе.

    Читайте также:  Как правильно подключить вилку с заземлением
    Ссылка на основную публикацию
    Adblock
    detector