Коэффициент сезонности для заземления - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Коэффициент сезонности для заземления

Расчет сопротивления контура заземления в частных домах

При эксплуатации электроустановок в некоторых случаях возникает пробой изоляции. При этом происходит утечка тока на корпус двигателей, стальных труб, проводки и т. д. Результатом этой утечки является выход из строя оборудования или поражение электрическим током. Чтобы избежать этого, необходимо использовать заземление. Расчет его произвести несложно — для этого необходимо воспользоваться определенной методикой.

Общие сведения

Защитным заземлением (ЗЗ) называется заземление, необходимое для предотвращения поражения человека электрическим током на электроустановках с напряжением питания до 1000 В. ЗЗ необходимо в случае возможного пробоя изоляции различных электрических машин и утечки тока на токоведущие части, при касании к которым происходит поражение электрическим током.

Основы электробезопасности

В отличие от других видов травм, электротравматизм происходит редко, но приводит к серьезным последствиям. Опасность поражения электрическим током заключается в том, что пострадавший практически во всех случаях не может оказать себе помощь, в результате чего вероятность смертельных исходов высока. Воздействие тока на организм человека происходит по нескольким направлениям.

Тепловое или термическое действие приводит к ожогам определенных участков кожи, перегреву органов, а также к разрыву нервных окончаний и кровеносных сосудов. При химическом воздействии происходит процесс электролиза крови, лимфы и других биологических растворов, которые содержатся в организме человека. Это приводит к нарушению ее физико-химического состава и нарушению функционирования организма.

При биологическом воздействии наблюдается возбуждение и гибель клеток организма, а также нарушение работы мышц, в результате чего может произойти остановка сердца, судорожные явления и остановка дыхания.

Уровень опасности поражения человека электричеством зависит от следующих факторов:

  • Параметров электричества.
  • Пути прохождения.
  • Времени воздействия на организм.
  • Внешней среды.
  • Сопротивления тела.

К параметрам электрического тока относятся его сила, величина напряжения, частота и вид тока, который классифицируется на постоянный и переменный.

Ток по закону Ома зависит от напряжения и сопротивления, однако эта зависимость является нелинейной при напряжениях свыше 100 В, поскольку происходит пробой верхнего слоя кожи и сопротивление тела резко уменьшается. При этом ток начинает расти. Опасным считается переменный ток при значениях напряжения меньше 300 В, а при значениях свыше 300 В постоянный ток становится опаснее переменного. Сопротивление тела человека уменьшается в интервале частот от 50 до 1 кГц. При росте частоты свыше 1 кГц опасность поражения уменьшается, при частотах 45-50 кГц эта вероятность поражения полностью исчезает.

Путь прохождения тока является его движением по организму человека. Наиболее опасным считается прохождение через сердце, поскольку ток способен нарушить его работу. Время воздействия на организм — это время, в течение которого организм подвергался вредному воздействию со стороны электричества.

Внешняя среда включает в себя влажность и температуру воздуха. Сопротивление тела (R) является переменной величиной, которая зависит от множества факторов: толщины кожи и ее влажности, состояния здоровья, температуры, возрастных характеристик и морально-психологического состояния.

Величина тока, протекающего через тело человека (I), зависит от напряжения, приложенного к нему, и значения его R. Верхний слой кожи обладает наибольшим R, в сухом состоянии равным значению до 400 кОм, а при повреждении этого слоя величина R может снизиться до 600 Ом. При расчетах R тела человека берется равной 1 кОм.

Электрические удары

Воздействие тока на организм человека характеризуется электрическими ударами, при которых судорожно сокращаются мышцы, и электротравмами, во время которых повреждаются ткани и органы. Среди электротравм самыми опасными являются ожоги при контакте с токоведущими частями оборудования и электрической дугой, при которой также возникает и металлизация кожи. Кроме того, возможны механические повреждения, возникающие при сокращении мышц, а также при падении.

При тяжелых травмах, полученных под воздействием тока, существует вероятность наступления клинической смерти, которая может перейти в биологическую при отсутствии медицинской квалифицированной помощи. Среди причин, приводящих к смертельному исходу, можно выделить остановку сердца и дыхания, а также электрический шок. При рефлекторной остановке сердца происходит влияние на нервную систему, что приводит к нарушению ритма из-за быстрых сокращений фибриллы. Кроме того, при прямом действии на сердце произойдет его остановка.

Паралич дыхательной системы возникает при прохождении тока через мышцы грудной клетки, а также в результате поражения нервной системы.

Электрический шок — реакция нервной системы на действие электрического тока, которая выражается в нарушении дыхания, кровообращения и обмена веществ.

Защитное заземление

ЗЗ используется для снижения риска поражения человека электрическим током (ЭТ) на различных электроустановках переменного и постоянного токов. Однако этот вид защиты применяют в основном в комбинации с устройством защитного отключения. Для увеличения уровня электробезопасности жилища необходимо правильно рассчитать контур заземления.

Основные виды

Основной характеристикой заземляющего контура является номинал сопротивления, величина которого изменяется в конкретной ситуации. Номиналы R ЗЗ следующие:

  • До 1000 В при условии, что нейтраль изолированная, R ЗЗ составляет не более 4 Ом.
  • Для трансформаторов, мощность которых меньше 100 кВ*А, R должно быть не более 10 Ом.
  • С изолированной нейтралью и напряжением номиналами 220 В, 380 В и 660 В R ЗЗ должно быть 2, 4 и 8 Ом соответственно.

Существуют два типа ЗЗ: контурное и выносное. Контурное не используется в заземлении для частного дома, а применяется на установках с напряжением свыше 1000 В. Оно состоит из отдельных заземлителей, которые размещены по периметру оборудования. Выносной тип состоит из заземлителя и заземляющего провода или магистрали.

Заземлителем является металлическая конструкция (кол, труба или уголок), которая погружена в землю. Провода соединяют корпус электроустановки и заземлитель. Места, где происходит соединение токоведущих частей электрического оборудования с заземляющей жилой, называются точками заземления.

Порядок установки

Заземлитель из одного проводника вкапывается в землю. Он может быть соединен с другими заземлителями. После того как монтаж произведен, траншею необходимо засыпать. Кроме того, следует оставить над поверхностью земли часть электрода для подсоединения к нему заземляющего провода, идущего к основной шине заземления в электрощите.

Если оборудование работает в нормальном режиме, то величина напряжения (Uз) будет равна 0. При коротком замыкании сопротивление заземления (Rз) равно 0. Существует формула, позволяющая найти Rз. Она основана на следствии из закона Ома: Rз = Uз / Iз. Расчет защитного заземления сводится к правильному нахождению Rз и сопоставлению его с ГОСТ.

Величину Rз следует определять исходя из характеристик грунта, который окружает заземлитель, а именно: влажности, плотности, содержания солей и сезонности.

Кроме того, важными составляющими величинами Rз, которые влияют на его величину, являются следующие:

  • Конструктивные особенности заземлителя.
  • Глубина вкапывания.
  • Диаметр заземляющей жилы.

Для эффективной защиты применяется группа заземлителей, которые объединяются в контур, причем между ними должно соблюдаться некоторое расстояние. Это связано с тем, что во время пробития изоляции ток уходит на корпус, а затем через заземлители — в землю. При этом на поверхности земли образуется разность потенциалов. И если человек находится в поле его действия, то существует вероятность поражения током при шаговом напряжении.

Глубина влияет на Rз, поскольку при глубоком погружении в грунт величина Rз уменьшается. Площадь поперечного сечения также играет важную роль. Для голого медного провода оно должно быть от 5 кв. мм., а для изолированного — 1,5 кв. мм. При прикосновении к токоведущей части электроустановки возникает напряжение прикосновения (Uпр), которое будет меньше Uз, поскольку его снижает одежда. Для расчета Rз следует знать еще одну величину, которая называется удельным сопротивление грунта (р определяется по таблице 1).

Таблица 1: Данные различных типов грунта, используемых для заземления

Тип грунтаУдельное сопротивление, Ом*м
Графитовая крошка0,1
Вода морская0,2
Глина влажная20
Ил30
Глина сухая60
Чернозем60
Песок влажный130-400
Песок сухой800
Бетон1000

Проанализировав табличные данные, можно сделать следующий вывод: значение р зависит от типа грунта, а на снижение его значения влияет влажность грунта. Расчет заземляющего устройства контура заземления зависит от коэффициента сезонности (Км), на который влияет температура окружающей среды. Его значения следующие:

  • От 0 до +5 Км = 1,3/1,8.
  • В интервале от -10 до 0 Км = 1,5/2,3.
  • При температурных интервалах -15..-10 Км = 1,7/4,0.
  • От -20 до -15 Км = 1,9/5,8.

Кроме того, значение Км зависит от типа погружения заземлителя или группы заземлителей. В числителе указано значение при вертикальном положении (0,6-0,7 м), а в знаменателе — при горизонтальном положении на глубине 0,4-0,8 м.

Формула расчета Rз для одиночного заземлителя в вертикальном положении принимает следующий вид: Rз = 0,3 * р * Км. Эта формула позволяет найти приблизительное значение, а для точных расчетов следует применять формулу, в которой учитываются следующие величины: длина электрода (l), диаметр прута (d) и глубина (h). Формула имеет следующий вид: Rз = (p/(2*3,1416 * l)) * (ln(2*l/d) + 0,5 * ln((4 * h + l)/(4 * h — l))).

При наличии нескольких электродов (n) следует воспользоваться еще одной формулой: Rn = Rз / (n * Кисп). Кисп является коэффициентом использования электрода, который учитывает влияние на него рядом вкопанных заземлителей. Он определяется по табличным значениям и подставляется в результирующую формулу.

Читайте также:  Как обозначается заземление на схеме

Таблица 2: Определение Кисп

Максимально допустимым Rз для частного дома является величина не более 4 Ом. В основном для изготовления ЗЗ применяются стальные трубы или уголки, поскольку этот материал является более дешевым по сравнению с медным электродом.

Для произведения расчетов величину R перемычек между электродами можно не учитывать. Способ расчета контура заземления, пример которого сводится к получению необходимого его значения в 4 Ом, достаточно прост. Он требует определенных знаний в области математики. Существует и другой метод — воспользоваться онлайн-сервисом или программой для расчета заземления. Примером программы для расчета является Excel.

Пример расчета

Очень часто при покупке дома необходимо рассчитать контур заземления. Если расчеты произведены неверно, то переделывание ЗЗ может занять огромное количество времени. Поэтому рекомендуется сначала научиться грамотно его рассчитывать, а затем приступать к практическим работам.

В большинстве случаях заземлители делаются из уголка 50х50 мм, длина которого составляет L = 2,5 м. Условие первого примера является следующим: глинистый грунт (р = 60 Ом * м), Км = 1,45, глубина траншеи составляет hтр = 0,5 м.

Алгоритм расчета имеет следующий вид:

  1. Найти p с учетом Км: р = 60 * 1,45 = 87 Ом *м.
  2. Выбрать расстояние между электродами: S = L = 2,5 м.
  3. Забить вниз уголок, размер полки (ребра уголка) которого составляет примерное значение диаметра электрода: d = 0,95 * 0,05 = 87 Ом * м.
  4. Найти глубину залегания средней точки уголка: h = 0,5 * L + hтр = 0,5 * 2,5 + 0,5 = 1,75 м.
  5. Подставить значения в формулу и определить для одного заземлителя: Rз = 27,58 Ом. Этого номинала недостаточно, поскольку по ГОСТ его значение должно быть не более 4 Ом (Rзгост) для 220 В.
  6. Определить количество электродов: n = Rз / (Кисп * Rзгост). Вычисление для Кисп = 27,58 / (1 * 4) = 7.
  7. По таблице найти Кисп для 7 электродов и подставить в формулу нахождения количества электродов c Кисп = 0,59: n = 12.
  8. Произвести перерасчет для n = 12 при Кисп = 0,54. Результат вычисления: n = 13.
  9. Подставить в формулу: Rз = Rзгост / (n * Кисп) = 4 Ом.

Для построения контура заземления с Rз = 4 Ом понадобятся 13 уголков. Все остальные задачи являются однотипными, а формулы и таблицы позволяют рассчитать заземление конкретного контура. Если не хочется тратить время на вычисления, то можно вычислить его значение в специальной программе или при помощи онлайн-сервисов.

Таким образом, ЗЗ необходимо для частного дома и выполняет основную функцию по защите человека от поражения электрическим током. Изготовить и рассчитать его можно по очень простой методике или воспользоваться специальными программами. Рекомендуется, кроме ЗЗ, использовать еще и устройства защитного отключения.

Расчет защитного заземления

Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.

К чему сводится расчет заземления?

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.

Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

где – ρэкв – эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ – сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t – заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1

ГрунтУдельное сопротивление грунта, Ом·м
Торф20
Почва (чернозем и др.)50
Глина60
Супесь150
Песок при грунтовых водах до 5 м500
Песок при грунтовых водах глубже 5 м1000

Заглубление горизонтального заземлителя можно найти по формуле:

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2

Тип заземляющих электродовКлиматическая зона
IIIIIIIV
Стержневой (вертикальный)1.8 ÷ 21.5 ÷ 1.81.4 ÷ 1.61.2 ÷ 1.4
Полосовой (горизонтальный)4.5 ÷ 73.5 ÷ 4.52 ÷ 2.51.5
Климатические признаки зон
Средняя многолетняя низшая температура (январь)от -20+15от -14+10от -10 до 0от 0 до +5
Средняя многолетняя высшая температура (июль)от +16 до +18от +18 до +22от +22 до +24от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

Rн – нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3

Характеристика электроустановкиУдельное сопротивление грунта ρ, Ом·мСопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380до 10015
свыше 1000.5·ρ
380/220до 10030
свыше 1000.3·ρ
220/127до 10060
свыше 1000.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

– в ряд; – по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Полное количество вертикальных заземлителей определяется по формуле:

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

Статьи и обзоры систем автоматизации и безопасности

23 декабря 2010

Системы защитного заземления

В современном здании, в котором находится большое количество различных приёмников электроэнергии, возникает необходимость наличия системы заземления, которая обеспечивает электро- и пожарную безопасность, защиту дорогостоящего электронного оборудования, грозозащиту зданий. Ниже приведены некоторые выдержки из ПУЭ, которые касаются систем заземления и уравнивания потенциалов.

Основные требования ПУЭ по заземлению

Глава 7.1. ЭЛЕКТРОУСТАНОВКИ ЖИЛЫХ, ОБЩЕСТВЕННЫХ, АДМИНИСТРАТИВНЫХ И БЫТОВЫХ ЗДАНИЙ

7.1.13. Питание электроприемников должно выполняться от сети 380/220 В с системой заземления ТN-S или ТN-С-S.

При реконструкции жилых и общественных зданий, имеющих напряжение сети 220/127 В или 3 х 220 В, следует предусматривать перевод сети на напряжение 380/220 В с системой заземления ТN-S или ТN-С-S.

Читайте также:  Как провести заземление в частном доме

7.1.21. При питании однофазных потребителей зданий от многофазной распределительной сети допускается для разных групп однофазных потребителей иметь общие N и РЕ проводники (пятипроводная сеть), проложенные непосредственно от ВРУ, объединение N и РЕ проводников (четырехпроводная сеть с РЕN проводником) не допускается.

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный – L, нулевой рабочий – N и нулевой защитный – РЕ проводники).

  • Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий
  • Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.
  • Сечения проводников должны отвечать требованиям п. 7.1.45.

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

7.1.69. В помещениях зданий металлические корпуса однофазных переносных электроприборов и настольных средств оргтехники класса I по ГОСТ 12.2.007.0-75 «ССБТ. Изделия электротехнические. Общие требования безопасности» должны присоединяться к защитным проводникам трехпроводной групповой линии (см. п. 7.1.36).

К защитным проводникам должны подсоединяться металлические каркасы перегородок, дверей и рам, используемых для прокладки кабелей.

7.1.70. В помещениях без повышенной опасности допускается применение подвесных светильников, не оснащенных зажимами для подключения защитных проводников, при условии, что крюк для их подвески изолирован. Требования данного пункта не отменяют требований п. 7.1.36 и не являются основанием для выполнения электропроводок двухпроводными.

7.1.87. На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:

  • Основной (магистральный) защитный проводник;
  • Основной (магистральный) заземляющий проводник или основной заземляющий зажим;
  • Стальные трубы коммуникаций зданий и между зданиями;
  • Металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.

Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

7.1.88. К дополнительной системе уравнивания потенциалов должны быть подключены все доступные прикосновению открытые проводящие части стационарных электроустановок, сторонние проводящие части и нулевые защитные проводники всего электрооборудования (в том числе штепсельных розеток).

Для ванных и душевых помещений дополнительная система уравнивания потенциалов является обязательной и должна предусматривать, в том числе, подключение сторонних проводящих частей, выходящих за пределы помещений. Если отсутствует электрооборудование с подключенными к системе уравнивания потенциалов нулевыми защитными проводниками, то систему уравнивания потенциалов следует подключить к РЕ шине (зажиму) на вводе. Нагревательные элементы, замоноличенные в пол, должны быть покрыты заземленной металлической сеткой или заземленной металлической оболочкой, подсоединенными к системе уравнивания потенциалов. В качестве дополнительной защиты для нагревательных элементов рекомендуется использовать УЗО на ток до 30 мА.

Не допускается использовать для саун, ванных и душевых помещений системы местного уравнивания потенциалов.

1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными. Искусственные заземлители не должны иметь окраски.

Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.

1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный – 10 мм², алюминиевый – 16 мм², стальной – 75 мм².

Расчёт заземления

Типовой расчёт сопротивления растеканию электрического тока заземляющего устройства, состоящего из вертикальных заземлителей, выполняется по приведённым ниже формулам:

R – общее сопротивление растеканию электрического тока

R1 – сопротивление вертикального заземлителя

R2 – сопротивление горизонтального заземлителя

ρ – удельное электрическое сопротивление грунта

ρ1 – удельное электрическое сопротивление верхнего слоя грунта

ρ2 – удельное электрическое сопротивление нижнего слоя грунта

n – количество вертикальных заземлителей

L1 – длина вертикального заземлителя

L2 – длина горизонтального заземлителя

L3 – длина соединительной полосы до ввода в здание

D – диаметр вертикального заземлителя

b – ширина полки горизонтального заземлителя

H – глубина верхнего слоя грунта

h1 – расстояние до середины вертикального заземлителя

h2 – расстояние до середины горизонтального заземлителя

k1 – климатический коэффициент для вертикальных заземлителей

k2 – климатический коэффициент для горизонтальных заземлителей

η – коэффициент использования для вертикальных электродов

Online расчёт заземления

Климатические коэффициенты для вертикальных и горизонтальных заземлителей

ЗаземлительКлиматическая зона
IIIIIIIV
Вертикальный1,8. 2,01,6. 1,81,4. 1,51,2. 1,4
Горизонтальный4,5…7,03,5…4,52,0…2,51,5…2,0

Климатические зоны России

I — Архангельская, Мурманская, Вологодская, Кировская, Пермская, Свердловская, Сахалинская, Камчатская и Магаданская области, северная половина Западной и Восточной Сибири и Республика Коми, северная часть Хабаровского края и восточная часть Приморского края;

II — Республика Карелия, Ленинградская, Новгородская, Псковская области, южная часть Хабаровского и западная часть Приморского краев;

III — Смоленская, Калининградская, Московская, Калининская, Орловская, Тульская, Рязанская, Ивановская, Ярославская, Горьковская, Брянская, Челябинская, Владимирская, Калужская, Костромская, Амурская области, южная часть Западной и Восточной Сибири, Республика Чувашия, Республика Мордовия, Республика Марий Эл, Республика Татарстан, Республика Башкирия и Республика Удмуртия;

IV — Курская, Астраханская, Куйбышевская, Саратовская, Волгоградская, Оренбургская, Воронежская, Тамбовская, Пензенская, Ростовская, Ульяновская области, Краснодарский край, Северный Кавказ и Закавказье.

Коэффициенты использования ηв и ηг для многоэлектродных заземлителей состоящих из стержней (труб или уголков)

Отношение расстояния между
трубами к их длине

Порядок расчета защитного заземления

1. Уточняют исходные данные: тип установки, виды основного оборудования, рабочие напряжения, план электроустановки с указанием всех основных размеров оборудования, формы и размеры электродов заземляющего устройства, удельное сопротивление грунта, характеристика климатической зоны, данные об естественных заземлителях, расчетный ток замыкания на землю.

2. Определяют допустимое сопротивление растеканию заземляющего устройства Rдоп по таблице 1.

3. Определяют расчетное удельное сопротивление грунта, в зависимости от вида грунта с учетом коэффициента y.

, (1)

где ρ – удельное сопротивление грунта при влажности 10 – 20 %, Ом*м (таблица 2);

ψ – коэффициент сезонности (таблица 3).

Таблица 1 – Допустимые сопротивления защитных заземлителей в электрических установках

Характеристика установокДопустимое сопротив-ление заземлителей Rдоп, Ом
Установки напряжением выше 1000 В. Защитное заземление в установках с большими токами замыкания на землю (IЗ > 500 А)RЗ 0,5
Заземляющее устройство одновременно используется для установок напряжением до и выше 1000 В ( Iз

Таблица 3 – Значения коэффициента сезонности в зависимости от климатической зоны

Значение коэффициента сезонности, ψКлиматические зоны РФ
IIIШIV
для вертикальных электро­дов при глубине заложения их вершины 0,5 – 0,7 м1,8 – 21,5 – 1,81,4 – 1,61,2 – 1,4
для вертикальных электро­дов при глубине заложения их вершины 0,8 – 1,0 м1,351,251,151,1
для горизонтальных протя­женных электродов4,5 –7,03,5 –4,52,0 – 2,51,5 – 2,0

4. Определяют сопротивление, Ом, растеканию одного верти-кального заземлителя – стержневого круглого сечения в земле (рисунок 1)

, (2)

где rРАСЧ в – расчетное удельное сопротивление грунта для вертикаль-ных электродов, Ом*м,

lв – длина вертикального заземлителя, м;

d – наружный диаметр заземлителя, м;

t – расстояние от середины заземлителя до поверхности грунта, м, определяется по формуле

(3)

t – расстояние от поверхности грунта до заглубленного заземлителя.

t

Рисунок 1 – Расположение вертикального заземлителя в земле

5. Определяют расчетное сопротивление растеканию горизонтального электрода

, (4)

где rРАСЧ г – расчетное удельное сопротивление грунта для горизон-тальных электродов, Ом*м,

Lг – длина полосы, м;

В – ширина полосы, м.

6. Установив характер расположения заземлителей в ряд или контуром (рисунок 2), определяют ориентировочное число вертикальных заземлителей

, (5)

Rв – сопротивление вертикального заземлителя, Ом;

Rдоп – допустимое сопротивление заземления, Ом (таблица 1).

7. Задаемся расстоянием между вертикальными заземлителями: отношение расстояния между вертикальными заземлителями к их длине S/l = 1, S/l = 2, S/l = 3. По отношению S/l и n´ (таблицы 4 и 5) определяют коэффициенты использования вертикальных ηв и горизонтальных ηг заземлителей таблицы 4 и 5.

а

б

а – расположение стержней по контуру; б – расположение стерж­ней в ряд;

1 – электродвигатели (объекты заземления); 2 – заземляющие шины внутреннего контура; 3 – заземлители; 4 – соединяющие шины ; 5 – соединительные провода; S – расстояние между стержнями; 1 – длина стержня

Рисунок 2 – Виды защитного заземления

Таблица 4 – Коэффициент использования горизонтальных заземлителей

Отношение расстояния между стержнями к их длине S/1Число вертикальных электродов заземлителя
При расположении полосы в ряду стержней
0,850,770,720,670,620,420,310,260,21
0,940,890,840,790,750,560,460,310,36
0,960,920,880,860,820,680,560,520,49
При расположении полосы по контуру стержней
0,450,360,340,270,240,220,210,2
0,560,430,400,320,300,290,280,27
0,700,600,560,450,410,390,370,36

8. Уточняем число вертикальных заземлителей

, (6)

где ηВ – коэффициент использования вертикальных заземлителей.

Таблица 5 – Коэффициент использования вертикальных заземлителей

Отношение рас-стояния между стержнями к их длине S/1При размещении стержней в рядПри расположении стерж­ней по контуру
Ориентировочное число стержней n′ηвОриентировочное число стержней n′ηв
0,840,66
0,760,58
0,670,52
0,560,44
0,510,38
0,470,36
0,90,76
0,850,75
0,790,66
0,720,61
0,660,55
0,650,52
0,930,84
0,90,78
0/850,74
0,790,68
0,760,64
0,740,62

9. Определяют сопротивление растеканию тока группового заземлителя

. (7)

10. Если выполняется условие, что

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9587 – | 7376 – или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Коэффициент сезонности для заземления

Расчет защитного заземления

В технической литературе часто рассказывается про заземление и зануление. Действительно, вопрос о заземлении в домах и квартирах встал в нашей стране относительно недавно. Еще когда бригады коммунистов электрифицировали страну, в деревенские домики подводили только фазу и ноль. Про провод заземления умалчивали. Во-первых, экономили алюминий как стратегический металл для самолетов, а во-вторых, мало кого заботили проблемы с защитой населения от поражения электрическим током, а в-третьих, не думали о заземлении как о эффективной мере защиты людей. Прошло достаточно времени, чтобы исчезли коммунисты, а вместе с ними и распалась страна, в которой они правили, но памятники, оставшиеся после них, все еще стоят. Памятники стоят, а дома разрушаются.

В нашим домах заземлены только трубы водопровода, канализации и газопровода, а также поэтажные щитки. При этом трубы газопровода для заземления не подходят из-за взрывчатого газа, который по ним летит. Трубы канализации для заземления также использовать нельзя. Хоть канализация сплошь из чугуна, но стыки чугунных труб заделаны цементом, который является плохим проводником. Трубы водопровода вроде как являются неплохим заземлением, но нужно учитывать, что трубы прокладывают не в земле, а в слое изоляции в специальных каналах. Самое надежное заземление – от распределительного этажного щита.

На предприятиях все изначально делали грамотно и заземляли все, что можно. Кроме заземления на предприятиях используется зануление. Многие ошибочно считают, что зануление – это проводок в розетке от нулевого провода к заземляющему контакту. Понятия “заземление” и “зануление” тесно связаны с понятием нейтрали.

Нейтраль – точка схождения трех фаз через обмотки в трансформаторе, соединенных звездой. Если эту точку соединить с заземлителями, то образуется глухозаземленная нейтраль трансформатора, и общую систему называют заземленной. Если к этой точке приварить шину и соединить ее со всеми приборам и аппаратам, то оборудование окажется заземленным.

Если нейтраль соединить с нулевой шиной (без заземлителей), то образуется изолированная нейтраль трансформатора, и общую систему называют зануленной. Если эту шину соединить со всеми приборами и аппаратами, то оборудование окажется зануленным.

Идея в том, что по заземленному или зануленному проводнику течет ток только при перекосе фаз, но это для трансформатора и при аварийных режимах работы. Нельзя выбирать – занулять или заземлять оборудование. Это сделано уже на подстанции. Обычно используется глухозаземленная нейтраль.

Если к примеру обмотка двигателя стиральной машины разрушилась и появилось сопротивление между корпусом и обмоткой, то на корпусе стиральной машины будет потенциал, который можно обнаружить индикаторной отверткой. Если машина не заземлена, то при касании корпуса потенциал машины станет потенциалом вашей руки, а т.к. ванная, где находится машина, является помещением особо опасным с точки зрения поражения током и следовательно пол является токопроводящим, нога приобретет нулевой потенциал и значит вы получите удар напряжением, пропорциональным потенциалу руки. Если машину заземлить, то в теории сработает автоматический выключатель защиты. Если машину занулить, то потенциал растечется вокруг всей машины и при касании потенциалы руки и ноги будут одинаковыми. Только надо учитывать, что ток растекается вокруг и при шагании ноги оказываются под разными потенциалами. И, конечно, можно получить удар напряжением.

Критерии применения заземления

Защитное заземление — преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением.

Защитное заземление применяется в сетях напряжением до 1000 В переменного тока – трёхфазные трехпроводные с глухозаземленной нейтралью; однофазные двухпроводные, изолированные от земли; двухпроводные сети постоянного тока с изолированной средней точкой обмоток источника тока; в сетях выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Заземление обязательно во всех электроустановках при напряжении 380 В и выше переменного тока, 440 В и выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках при напряжении 42 В и выше переменного тока, 110 В и выше постоянного тока; при любых напряжениях во взрывоопасных помещениях.

В зависимости от места размещения заземлителей относительно заземляющего оборудования различают два типа заземляющего устройств – выносное и контурное.

При выносном заземляющем устройстве заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование.

При контурном заземляющем устройстве электроды заземлителя размещают по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки.

В открытых электроустановках корпуса присоединяют непосредственно к заземлителю проводами. В зданиях прокладывается магистраль заземления, к которой присоединяют заземляющие провода. Магистраль заземления соединяют с заземлителем не менее чем в двух местах.

В качестве заземлителей в первую очередь следует использовать естественные заземлители в виде проложенных под землёй металлических коммуникаций (за исключением трубопроводов для горючих и взрывчатых веществ, труб теплотрасс), металлических конструкций зданий, соединённых с землёй, свинцовых оболочек кабелей, обсадных труб артезианских колодцев, скважин, шурфов и т.д.

В качестве естественных заземлителей подстанций и распределительных устройств рекомендуется использовать заземлители опор отходящих воздушных линий электропередачи, соединённых с заземляющим устройством подстанций или распределительным устройством с помощью грозозащитных тросов линий.

Если сопротивление естественных заземлителей Rз удовлетворяет требуемым нормам, то устройство искусственных заземлителей не требуется. Но это можно только измерить. Посчитать сопротивление естественных заземлителей нельзя.

Когда естественные заземлители отсутствуют или использование их не даёт нужных результатов, применяют искусственные заземлители – стержни из угловой стали размером 50Х50, 60Х60, 75Х75 мм с толщиной стенки не менее 4 мм, длиной 2,5 — 3 м; стальные трубы диаметром 50—60 мм, длиной 2,5 — 3 м с толщиной стенки не менее 3,5 мм; прутковая сталь диаметром не менее 10 мм, длиной до 10 м и более.

Заземлители забивают в ряд или по контуру на такую глубину, при которой от верхнего конца заземлителя до поверхности земли остаётся 0,5 — 0,8 м. Расстояние между вертикальными заземлителями должно быть не менее 2,5—3 м.

Для соединения вертикальных заземлителей между собой применяют стальные полосы толщиной не менее 4 мм и сечением не менее 48 кв.мм или стальной провод диаметром не менее 6 мм. Полосы (горизонтальные заземлители) соединяют с вертикальными заземлителями сваркой. Место сварки обмазывается битумом для влагоизоляции.

Магистрали заземления внутри зданий с электроустановками напряжением до 1000 В выполняют стальной полосой сечением не менее 100 кв.мм или сталью круглого сечения той же проводимости. Ответвления от магистрали к электроустановкам выполняют стальной полосой сечением не менее 24 кв.мм или круглой сталью диаметром не менее 5 мм.

Нормируемые сопротивления заземляющих устройств приведены в табл.1.

Таблица 1. Допустимые сопротивления заземляющего устройства в электроустановках до и выше 1000 В

Наибольшие допустимые значения Rз, Ом

Характеристика электроустановок

Rз Rз, то необходимо устройство искусственного заземления.

4. Определяют удельное сопротивление грунта ρ из таблицы 2. При производстве расчётов эти значения должны умножаться на коэффициент сезонности, зависящий от климатических зон и вида заземлителя (таблица 3).

Таблица 2. Приближенные значения удельных сопротивлений грунтов и воды p, Ом•м

Наименование грунта

Удельное сопротивление, Ом•м

Читайте далее: Ссылка на основную публикацию
Adblock
detector