Переходное сопротивление заземления гост - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Переходное сопротивление заземления гост

Переходное сопротивление заземления гост

_______________
* Действует ГОСТ 12.1.018-93, здесь и далее по тексту. – Примечание “КОДЕКС”.

5. ПЕРЕИЗДАНИЕ, апрель 1993 г., с Изменениями N 1, 2, Постановления от 20.12.86 N 4314, от 13.07.92 N 677 (ИУС 10-92)

6. Снято ограничение срока действия, Постановление от 13.07.92 N 677

Настоящий стандарт распространяется на ракеты всех классов, ракеты-носители, космические аппараты и их составные части (далее в тексте – изделия).

Стандарт устанавливает общие требования к металлизации и заземлению, которые необходимы для защиты изделий от воздействия зарядов статического электричества в процессе их изготовления, испытаний и эксплуатации.

(Измененная редакция, Изм. N 2).

1. ОБЩИЕ ТРЕБОВАНИЯ К МЕТАЛЛИЗАЦИИ

1. ОБЩИЕ ТРЕБОВАНИЯ К МЕТАЛЛИЗАЦИИ

1.1. Общие положения

1.1.1. Металлизация предназначена для приведения всех частей изделия к одному электрическому потенциалу.

Металлизацию производят в процессе сборки изделий путем соединения надежности и устойчивости электропроводящими связями составных частей и комплектующих элементов изделия, между которыми возможно возникновение разности потенциалов от электростатических полей.

1.1.2. На этапах разработки изделий разработчик должен:

производить оценку условий, способствующих возникновению электростатических полей;

определять требования и принимать меры по обеспечению надежной электростатической защиты высокочувствительных к электрическому разряду устройств, комплектующих элементов и отдельных систем изделия;

разрабатывать проектную документацию на расположение мест металлизации и заземления.

(Измененная редакция, Изм. N 1).

1.1.3. Металлизация должна обеспечивать:

надежное функционирование аппаратуры, отдельных систем и изделия в целом при воздействии зарядов статического электричества;

надежное функционирование аппаратуры, отдельных систем и изделия в целом при влиянии помех, которые могут возникать при электрических разрядах в местах переменных контактов между отдельными частями конструкции изделия и комплектующих элементов;

надежность в работе высокочувствительных к электрическому разряду устройств при воздействии зарядов статического электричества, которые могут вызывать преждевременное их срабатывание;

безопасность изделия от воздействия зарядов статического электричества, которые могут вызывать при определенных условиях пожары и взрывы.

1.1.4. Металлизировать необходимо:

металлические и неметаллические части конструкции, которые образуют внешний контур изделия, площадь наружной поверхности которых превышает 0,2 м или превышает длину 0,5 м;

составные металлические и неметаллические части изделия (баки, отсеки, проставки, ступени, стыковочные узлы, головные части, гаргроты, обтекатели и т.п.);

подвижные и складывающиеся конструкции изделия (кресла, люки, панели, тяги, фермы, штанги, каркасы солнечных батарей и т.п.);

воронкогасители, успокоители, датчики и другие элементы конструкции, находящиеся внутри баков с компонентами топлива;

двигательные установки (ДУ), пороховые ракетные двигатели (ПРД), рулевые машины (РМ), корпуса пироагрегатов (разрывной болт, пиропатрон, пироклапан, пирочека и т.п.);

металлические корпуса электрических средств инициирования;

трубопроводы систем наддува, дренажа, пневмоуправления, питания и слива компонентов топлива и т.п.;

электро-, радио- и телеаппаратуру, аппаратуру систем телеметрии и т.п.;

экранированные провода неэкранированных жгутов, экранированные жгуты и кабели, в том числе жгуты и кабели, покрытые токонепроводящими материалами;

металлические корпуса электрических соединений, применяемых для металлизации разделяемых составных частей изделия.

Примечание. Составные части и комплектующие элементы изделия, соединенные между собой или с корпусом изделия при помощи сварки или пайки, металлизировать не требуется.

(Измененная редакция, Изм. N 1).

1.1.5. Материалы металлизируемых элементов в местах их контактирования, материалы контактирующих поверхностей металлизируемых элементов и наконечников перемычек по ГОСТ 18707, материалы крепежных и установочных деталей должны составлять допустимые по электрохимическому потенциалу контактные пары по ГОСТ 9.005.

1.1.6. Крепежные детали (болты, винты, заклепки, шайбы и т.п.), установочные детали (хомуты, колодки, скобы и т.п.), кроме деталей, изготовленных из коррозионно-стойких токопроводящих сплавов, должны иметь токопроводящие, защитные покрытия, указанные в конструкторской документации. Все детали должны быть очищены от загрязнений, не должны иметь следов коррозии и повреждений защитного токопроводящего покрытия.

(Измененная редакция, Изм. N 1).

1.1.7. Наконечники перемычек должны быть установлены на частях металлизируемых деталей и сборочных единиц, расположенных в доступных для осмотра местах. Изгибание наконечников перемычек не допускается.

(Измененная редакция, Изм. N 2).

1.1.8. Перемычки выбирают минимальной длины по ГОСТ 18707, при этом значение переходного сопротивления между металлизируемыми элементами не должно превышать норм, установленных в табл.1.

Норма переходного сопротивления, Ом, не более,
при металлизации

Материалы контактирующих поверхностей металлизируемых элементов

Что такое сопротивление заземления

Основной характеристикой заземляющего защитного устройства является сопротивление. Сопротивление заземления включает в себя сопротивление грунта, проходящего через него тока, сопротивление заземлителя и сопротивление проводников. Две последние величины зачастую имеют малые значения по сравнению с сопротивлением растекания тока.

Заземление, которое проходит в доме требует проверки, для удостоверения в своей исправности. После окончания работ по монтажу заземления, вся защитная линия подвергается тщательному осмотру и диагностики на предмет невредимости и правильности соединения.

Нормы сопротивления заземления

Идеальное сопротивление заземления равно нулю, но таких данных добиться практически невозможно. Поэтому было создано нормирование данных величин, опубликованных в правилах устройства электроустановок (ПУЭ). Данные нормы сопротивления подходят для грунта, способствующего наилучшему растеканию электрического тока – глина, суглинок, торф. Также показатель сопротивления зависит от погоды и климата на местности монтажа защитного устройства.

Так, согласно ПУЭ для жилищ частного сектора, следует иметь заземление локализованного значения с указанными данными составляющими не более 30 Ом., при подключении электрической сети 220/380 Вольт.

В не зависимости от погодных условий значение сопротивления должно соответствовать таким показателям: 2 Ома для 380 Вольт однофазного тока и 660 Вольт трехфазного тока; 4 Ома для 220 Вольт однофазного тока и 380 Вольт трехфазного тока; 8 Ом для 127 Вольт однофазного тока и 220 Вольт трехфазного тока.

Заземлителю, проходящего вблизи от нейтрали трансформатора или генератора, должно принадлежать сопротивление: не более 15 Ом для напряжения 380 Вольт однофазного тока и 660 Вольт трехфазного тока; не более 30 Ом для напряжения 220 Вольт однофазного тока и 380 Вольт трехфазного тока; не более 60 Ом для напряжения 127 Вольт источника однофазного тока и 220 Вольт источника трехфазного тока.

Какое должно быть сопротивление заземления

Одним из основных критериев продуктивности любого помещения защитного заземления является сопротивление заземления. Это значение показывает противодействие беспрепятственному распространению электрического тока в слоях земли, поступающего в грунт через защитное устройство – заземлитель.

В лучшем случае этот показатель сопротивления равен нулю. При данной величине электрический ток поглощается полностью. В практическом плане такого показателя добиться невозможно. Для правильной работы электрооборудования и надежной защиты граждан допускается конечное значение 0,5 Ом для всего защитного устройства.

Переходное сопротивление заземления

Схема заземления включает в себя множество элементов, соединенных между собой. В случае обрыва, распайки швов или окисления соединений данный показатель начинает увеличиваться, что приводит к ухудшению эффективности защитной системы. При существовании большой массы потребителей и наличие значимых соединений в заземляющей схеме данная величина возрастает.

В промежутках соединений элементов заземления определяют переходное сопротивление. Для контактирующего соединения допускается максимальное значение 0,05 Ом. В случаях, когда данный показатель выше 0,05 Ом, это говорит о неработоспособности системы. Такие неисправности необходимо устранять, так как увеличенное сопротивление, делает защитные функции системы ничтожными.

Переходное сопротивление в заземляющем устройстве называется металлосвязью. Она характеризует соединение в цепи между заземляющим устройством и заземляемым электрооборудованием. Дефекты, возникающие в металлосвязи, ведут к короткому замыканию. Цель замеров сопротивления металлосвязи — определение наличия повреждения на отрезке участка электрооборудования и заземляющего устройства.

Основной характеристикой металлосвязи является сопротивление измеряемой части заземляющей системы, которое должно соответствовать 0,05 Ом. В ходе проверки исследуются надежность и правильность соединений посредством визуального осмотра. Качество сварочных швов проверяется ударом тяжелого молотка. В ПУЭ оговаривается, что заземляющие проводники должны быть надежно скреплены, что обеспечивает целостность электрической линии.

Заземляющие проводники, сделанные из стали, требуется соединять при помощи сварки. Данные участки должны быть расположены так чтобы предоставить беспрепятственный доступ для осуществления проверок, измерений, осмотров в дальнейшем времени.

Согласно требованиям ПУЭ соединения проводников и нейтралей присоединяются посредством сварки или болтов. Для присоединения электроприборов, которые постоянно монтируются, употребляются гибкие проводники.

Испытания сопротивления заземления

Существуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления. Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию. При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

Читайте также:  Как измерить заземление мегаомметром

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

Измерение сопротивления заземления

Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.

Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.

Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.

Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.

Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить к разъему “клещи”.
  • К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить к разъему “клещи”.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

Измерение сопротивления заземления с измерительными клещами и передающими клещами

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить измерительными клещами и подключить к разъему П1.
  • Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
  • Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
  • Начать измерение, нажав кнопку Rx.

Измерение удельного сопротивления грунта


Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.

Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом. При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.

Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов, удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.

Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания. Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

Читайте также:  Как узнать есть ли заземление в квартире

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления – 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 – 35 кВ сетей с изолированной нейтралью – 250/Ip, но не более 10 Ом, где Ip – расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 – 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

Переходное сопротивление заземления гост

Целью настоящей методики является обеспечение качественного и безопасного проведения проверки наличия цепи и выполнение замеров переходных сопротивлений между заземлителями и заземляющими проводниками, заземленным оборудованием (элементами) и заземляющими проводниками.

Настоящий документ разработан для применения персоналом электролаборатории в Краснодаре ООО “Энерго Альянс” при проведении проверки наличия цепи и выполнение замеров переходных сопротивлений между заземлителями и заземляющими проводниками, заземленным оборудованием (элементами) и заземляющими проводниками.

Проверка проверки наличия цепи между заземлёнными установками и

элементами заземлённой установки проводится при проведении приемо-сдаточных испытаний электроустановки и в течение ее эксплуатации в сроки, устанавливаемые системой планово-предупредительных ремонтов.

Согласно 1.8.36 (п.2) Правил устройства электроустановок (ПУЭ), 7-ое издание, при проведении приемо-сдаточных испытаний электроустановки следует проверять сечения, целостность и прочность проводников, а также их соединений и присоединений.

Глава 1.7 ПУЭ, 7-ое издание, предъявляет следующие требования к заземляющим проводникам:

2.1. К защитным РЕ-проводникам.

Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.7.5 ПУЭ

Сечение фазных проводников, мм 2

Наименьшее сечение защитных проводников, мм 2

Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Во всех случаях сечение медных защитных проводников, не входящих в состав кабеля или проложенных не в общей оболочке (трубе, коробе, на одном лотке) с фазными проводниками, должно быть не менее:

– 2,5 мм 2 – при наличии механической защиты;

– 4 мм 2 – при отсутствии механической защиты.

Сечение отдельно проложенных защитных алюминиевых проводников должно быть не менее 16мм 2 (требования п. 1.7.127 ПУЭ).

2.2. К совмещенным нулевым защитным и нулевым рабочим РЕ N -проводникам.

Нулевые защитные (РЕ) и нулевые рабочие ( N ) проводники могут быть совмещены в одном (РЕ N ) проводнике в многофазных цепях в системе Т N для стационарного проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм 2 по меди и 16 мм 2 по алюминию.

2.3. К проложенным в земле заземляющим проводникам.

Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4 ПУЭ.

ПУЭ Таблица 1.7.4.

Площадь поперечного сечения, мм 2

Толщина стенки, мм

-для вертикальных заземлителей;

-для горизонтальных заземлителей.

-для вертикальных заземлителей;

-для горизонтальных заземлителей.

· Диаметр каждой проволоки

2.4. К заземляющим проводникам подключаемым к главной заземляющей шине сооружений.

Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках до 1кВ, должен иметь сечение не менее: медный -10мм 2 , алюминиевый – 16мм 2 , стальной – 75мм 2 (требования п.1.7.117 ПУЭ).

2.5. К проводникам системы уравнивания потенциалов сооружений.

Сечение проводников основной системы уравнивания потенциалов должно быть не менее половины наибольшего сечения защитного проводника электроустановки, если сечение проводника уравнивания потенциалов при этом не превышает 25 мм 2 по меди или равноценное ему из других материалов. Применение проводников большего сечения, как правило, не требуется. Сечение проводников основной системы уравнивания потенциалов в любом случае должно быть не менее: медных – 6 мм 2 , алюминиевых – 16 мм 2 , стальных – 50 мм 2 (п. 1.7.137 ПУЭ).

Сечение проводников дополнительной системы уравнивания потенциалов должно быть не менее:

– при соединении двух открытых проводящих частей – сечения меньшего из защитных проводников, подключенных к этим частям;

– при соединении открытой проводящей части и сторонней проводящей части – половины сечения защитного проводника, подключенного к открытой проводящей части.

Сечения проводников дополнительного уравнивания потенциалов, не входящих в состав кабеля, должны соответствовать требованиям п. 1.7.127 ПУЭ, 7-ое издание.

Нормы испытаний заземляющих и защитных проводников в электроустановках, введенных в эксплуатацию, приведены в приложении 3 Правил технической эксплуатации электроустановок потребителей (ПТЭЭП)

ПТЭЭП Приложение 3

26.1 Проверка соединений заземлителей с заземляемыми элементами, в том числе с естественными заземлителями

Проверка производится для выявления обрывов и других дефектов путем осмотра, простукивания молотком и измерения переход­ных сопротивлений. Проверка соединения с естественными заземлителями производится после ремонта заземлителей

Читайте также:  Устройство заземления в частном доме своими руками

В случае измерения переходных сопротивлений следует учитывать, что сопротивление исправного соединения не превышает 0,05 Ом

У кранов проверка наличия цепи должна производится не реже 1 раза в год

28.5 Проверка наличия цепи между заземленными установками и элементами заземленной установки

Не должно быть обрывов и неудовлетворительных контактов. Переходное сопротивление контактов должно быть не выше 0,05 Ом

Производится на установках, срабатывание защиты которых проверено.

К, Т, М – производятся в сроки, устанавливаемые системой ППР

В соответствии с ГОСТ Р 50571.16-99 (МЭК 60364-6-61-86) испытание непрерывности заземляющих и защитных проводников рекомендуется выполнять с использованием источника питания, имеющего напряжение холостого хода от 4 до 24 В постоянного или переменного тока при испытательном токе не менее 0,2А. В соответствии с ПТЭЭП шкала приборов должна позволять снятие требуемых нормативных величин сопротивления равных 0,05 Ом.

Выше перечисленным требованиям соответствуют приборы ИФН-200 и ИФН-300, которыми располагает наша электролаборатория в Краснодаре и Краснодарском крае.

3. Наименование и характеристика измеряемой величины.

Измеряемая величина – переходное сопротивление контактных соединений заземляющих элементов. Величина сопротивления измеряемого участка свидетельствует о качестве контактных соединений. Если сопротивление участка не превышает 0,05 Ом (ПТЭЭП приложение 3, п. 28.5), то при положительных результатах внешнего осмотра и механических испытаний (контрольный поджим болтовых соединений и ударная нагрузка сварных соединений) можно считать, что участок соответствует требованиям нормативов, действующих в энергетике.

4. Метод измерений.

При выполнении измерений используют метод непосредственного замера переходного сопротивления контактных соединений заземляющих элементов.

Прочность контактных сварок и сварных соединений определяется ударом молотка массой не более 1 кг.

Сечение заземляющих (зануляющих) проводников проверяют, измеряя их геометрические размеры.

5. Состав и описание используемых при измерении приборов.

Переходное сопротивление контактных соединений заземляющих элементов будет измеряться прибором ИФН-300 в режиме омметра.

Основные метрологические характеристики ИФН-300 в режиме Измерения электрического сопротивления постоянному току

Пределы измерения сопротивления, Ом

Пределы допускаемой основной абсолютной погрешности, Ом

Ток в измерительной цепи для сопротивлений не более 10 Ом, мА

Измерит. напряжение постоянного тока на разомкнутых гнездах, В

Измерение сопротивления постоянному току основано на измерении напряжения на нагрузке при протекании через неё испытательного тока. Рассчитанная величина сопротивления отображается на индикаторе и запоминается. Изменение величины испытательного тока, переключение диапазонов измерения и определение единиц измерения производятся автоматически.

Прибор автоматически устраняет погрешность, обусловленную сопротивлением кабелей измерительных для чего в приборе существует режим корректировки нуля.

В приборе реализована возможность обмена данными с внешним устройством (компьютером) по беспроводной связи. Для передачи данных в ПК необходимо наличие устройства Bluetooth. При отсутствии встроенного устройства необходим внешний Bluetooth-USB адаптер.

6. Порядок проведения измерений.

Подключение кабелей к прибору для измерения сопротивления металлосвязи показано на рисунке 1.

Рисунок 1. – Измерение сопротивления металлосвязи

Кнопкой «Режим» выберите режим «Rm». Если уровень внешних помех на объекте измерения не позволяет провести измерение с заданной точностью, на индикаторе в режиме ожидания появится сообщение о невозможности измерения сопротивления.

Внимание! Не допускается подача сетевого напряжения на вход «*» – «Ω».

Для начала измерений нажмите кнопку Rx. Измеренное значение сопротивления отобразится на индикаторе (рисунок 2.).

Рисунок 2. – Измерения сопротивления металлосвязи

Результаты последнего измерения отображаются на индикаторе в течение 20секунд и при нажатии кнопки “Память” могут быть записаны в ячейку памяти, или отображение может быть прервано при нажатии любой кнопки.

Примечание. Следует помнить, что истинное сопротивление измеряемого объекта меньше показаний прибора на величину сопротивления измерительных кабелей и переходных сопротивлений в точках их подключения. Влияние сопротивления измерительных кабелей на результат измерения корректируется путём вычитания из общего результата измерения сопротивления измерительных кабелей, полученных в результате процедуры коррекции >0

При смене измерительных кабелей, а также периодически в процессе эксплуатации необходимо производить коррекцию нуля « >0 Подключите измерительные кабели к гнездам «*» и «Ω». Войдите в меню, выберите пункт «Коррекция» и нажмите кнопку Rx. После перехода в меню коррекции, выберите пункт «Корректировать». Надежно замкните между собой 1/Temp/msohtmlclip1/01/clip_image015.jpg” /> свободные концы измерительных кабелей и нажмите кнопку Rx. Прибор произведет измерение сопротивления кабелей и сохранит в памяти. В дальнейшем это значение

Читайте далее:
Ссылка на основную публикацию
Adblock
detector