Замер контура заземления заземляющего устройства - Electrik-Ufa.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Замер контура заземления заземляющего устройства

Измерение сопротивления контура защитного заземления

Защитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением.

Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1.

Описание измерителя заземления М416

Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (?). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В.

Измеритель сопротивления заземления Ф4103-М1

Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов).

Измеритель Ф4103 является безопасным.

При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения).

Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима – не более 10 секунд. Время установления показаний в положении “ИЗМ I” – не более 6 секунд, в положении “ИЗМII” – не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ – 7250 часов. Средний срок службы – 10 лет Условия эксплуатации – от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг , не более – 2,2.

Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме “ИЗМI”. Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки.

Порядок проведения измерения сопротивления контура защитного заземления

1. Установить элементы питания в измеритель заземления.

2. Установить переключатель в положение «Контроль 5 ?», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы.

3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1.

4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода.

5. Переключатель установить в положение «Х1».

6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю.

7. Результат измерения умножить на множитель.

Подключение прибора М416 для измерения сопротивления контура заземления

Как выполняется измерение сопротивления заземления

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Тогда получим: I1∙rx=I2∙rаб.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Читайте также:  Как сделать заземление в гараже своими руками

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!

Измерение сопротивления контура заземления

При использовании электрических приборов всегда существует риск поражения электрическим током. Эта вероятность происходит из свойств упорядоченного потока заряженных частиц: он проходит через тот участок цепи, в котором сопротивление имеет минимальное значения. В разное время производители приборов и комплектующих пытались бороться с этим и обезопасить человека от вредного или даже смертельного воздействия тока. Но в конечном итоге наиболее простым и надежным остается заземление.

Заземление применяется на промышленных предприятиях и в загородных домах. Особую роль оно играет в случае, когда мощность прибора превышает критические значения. Человеку достаточно получить удар силой 0.1 ампера, чтобы гарантированно погибнуть. Также не стоит забывать, что даже исправное оборудование может служить источником опасности. Это может случиться из-за разряда молнии и по некоторым другим причинам. Следовательно, к вопросу установки заземления стоит подходить ответственно и учитывать все нюансы.

Испытания заземления

Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

Чем измеряют заземление

Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.
Читайте также:  Как определить заземление с помощью мультиметра

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

где:
ρ — сопротивление грунта на единицу длины (Ом×м)
L — протяженность заземлителя (в метрах)
d — ширина заземлителя (в метрах)
T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

ρ — сопротивление грунта на единицу длины (Ом×м);
L — протяженность заземлителя (в метрах);
d — ширина заземлителя (в метрах);
T — расстояние от поверхности земли до середины заземлителя (в метрах);
С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Итоги и выводы

Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

Видео по теме

Как измерить сопротивление контура заземления – обзор методик

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Безэлектродный способ

Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

  • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
  • экономия времени и средств для выполнения работ.

Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

Тестер автоматически определяет сопротивление контура заземления для данного соединения.

Периодичность измерений

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

Читайте также:  Как найти заземление в проводке

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

Замер сопротивления заземляющих устройств

Контур заземления – важный элемент защитного электрооборудования. Он соединяется с системой выравнивания потенциалов строительного объекта и всеми корпусами электроприборов, оберегая людей от получения электротравмы при соприкосновении с токопроводящей цепью. Для соблюдения требований безопасности нужно периодически проверять состояние и эффективность заземляющих устройств.

Как работает заземление

Заземление обеспечивает уменьшение напряжения между электроустановкой и землей до безопасного уровня. При нормальной работе электрооборудования и цепей через контур проходят только малые фоновые токи. При пробое изоляционного слоя проводки на корпусе оборудования возникает высокое напряжение. Оно отводится через контур по РЕ-проводнику на потенциал земли. В итоге напряжение на нетоковедущих поверхностях оборудования уменьшается до безопасного значения.

При повреждении заземляющих устройств напряжение не отводится. Если при этом человек окажется между потенциалами неисправного электроприбора и землей, через его тело будет проходить ток. Поэтому во избежание электротравм при эксплуатации электрического оборудования важно поддерживать эффективность заземления и периодически проверять его состояние.

Причины проблем с сопротивлением заземления

В нормально работающем контуре ток в аварийной ситуации по РЕ-проводнику идет на контактирующие с грунтом токоотводящие электроды. Общий поток равномерно делится на составляющие и следует на потенциал земли. Но продолжительное пребывание тоководов в агрессивной среде грунта приводит к окислению металла и появлению на его поверхности окисной пленки.

Из-за коррозийных явлений ухудшается протекание тока, и увеличивается электрическое сопротивление контактов. Коррозия в виде отстающих от металлической поверхности чешуек нарушает локальный электрический контакт. При дальнейшем коррозийном повреждении тоководов сопротивление контура возрастает, заземляющее устройство становится менее проводимым и не справляется со своими задачами. Для выяснения состояния контура заземления выполняются замеры сопротивления заземляющих устройств.

Цель замеров сопротивления ЗУ

Качество заземления характеризуется величиной сопротивления протеканию тока. Чем ниже это значение, тем лучше справляются со своими задачами заземляющие устройства. Основные способы уменьшения сопротивления – увеличение площади заземляющих электродов и уменьшение удельного электрического сопротивления почвы.
Чтобы снизить сопротивление, можно увеличить число или глубину заземляющих электродов. Измерение сопротивления заземляющих устройств помогает минимизировать риск аварий, поломки электроустановок и нанесения урона здоровью или жизни людей.

Типы заземляющих устройств

Есть 3 вида заземления:
– Рабочее – определенные точки электрической цепи соединены с землей. Этот тип заземления осуществляется при помощи прибивных предохранителей, резисторов и других элементов. Оно необходимо для безопасного функционирования в нормальных и аварийных рабочих условиях.
– Заземление молниезащиты – молниеприемники и разрядники соединяются с землей, чтобы токи молнии отводились в землю без ущерба для электроустановки и находящихся рядом людей.
– Защитное заземление – металлические части, по которым не проходит ток, но есть риск оказаться под напряжением в случае замыкания на корпус. Для обеспечения безопасности соединяются с землей.

Нормальные величины для сопротивления заземляющих устройств

Согласно Правилам устройства электроустановок, оптимальная периодичность измерений сопротивления заземления – не реже, чем единожды в год. При этом первая проверка осуществляется сразу после монтажных работ, чтобы удостовериться, что схема заземлена правильно.

Норматив величины сопротивления заземления зависит от напряжения источника в цепи.

Трехфазный ток в источнике с напряжением:

Однофазный ток в источнике с напряжением:

Норма сопротивления заземления

660 В

380 В

Не превышает 2 Ом

Не превышает 4 Ом

Не превышает 6 Ом

Как измеряют сопротивление заземления

Методика измерения сопротивления заземляющих устройств основывается на разных теоретических базах:

  • по формуле Дуайта (вычисляет сопротивление заземления в зависимости от радиуса электрода, глубины его погружения в землю и среднего удельного сопротивления грунта)
  • по принципу падения потенциала
  • по стандартному 3-проводному методу (другое название – метод 62%)
  • по двухточечному методу (с последовательно включенными двумя устройствами заземления – методика, отлично подходящая для городских условий)
  • по методу двух клещей (когда передающие клещи провоцируют ток в контуре, а дополнительные – снимают его величину)
  • по методу Веннера (выявляет зависимость между расстоянием от электрода до электрода и глубиной, где течет ток).

Замер сопротивления контура заземления проходит с применением измерительных приборов М416 или Ф4103-М1. Ход работ таков:

  • Элементы питания устанавливаются в измеритель заземления.
  • Устанавливается переключатель в положение «Контроль», при этом стрелку индикатора нужно привести в отметку «0» после нажатия кнопки и вращения рукоятки «реохорд». Соединительные провода подключаются к прибору-измерителю, как указано в инструкции.
  • Зонд и заземлитель (которые выступают в качестве вспомагательных электродов) углубляют до 0,5 м, затем подключают к ним соединительные провода.
  • Переключатель устанавливают в «Х1», нажимают кнопку и двигают стрелку индикатора вращением ручки реохорда в нулевое положение. Результат умножается на необходимый множитель.

Методы замеров сопротивления заземляющих устройств

По 3-проводной схеме (3П) сопротивление заземляющего устройства измеряется при значениях выше 5 Ом. В остальных случаях прибор подключается по 4-проводной схеме (4П). Нужный метод измерения выбирается кнопкой «Режим». При использовании метода 4П выполняются следующие действия:

    • Определяется максимальная диагональ (Д) заземляющего устройства (ЗУ).
    • ЗУ соединяется измерительными кабелями с гнездами Т1 и П1.
    • В грунт на дистанции 1,5 Д, но не менее 20 м от ЗУ, устанавливается потенциальный штырь П2.
    • В грунт на расстоянии больше 3Д, но не меньше 40 м от ЗУ, устанавливается токовый штырь Т2.
    • К разъему Т2 прибора подключается соединительный кабель.
    • Проводится серия замеров. При этом потенциальный штырь П2 последовательно устанавливается в грунт на расстоянии 10, 20, …, 90% от дистанции до токового штыря Т2. При этом ЗУ и измерительные штыри обычно размещаются на одной линии. Амплитудное значение напряжения помехи (при его наличии) измеряется в вольтах и отображается на индикаторе. В таком случае нужно отыскать подходящее направление размещения штырей, чтобы минимизировать значение напряжения помехи.

  • Строится график зависимости сопротивления от дистанции между ЗУ и П2. При равномерном возрастании сопротивления в средней части графика истинным считается значение между точками с наименьшей разницей величины сопротивления (не более 5%). Иначе все расстояния от ЗУ до П2 и Т2 нужно увеличить в 1,5–2 раза или сменить направление расположения штырей.

При использовании 3-проводного метода нужно выбрать его кнопкой «Режим», подсоединить измерительный кабель наименьшей длины к гнезду Т1. Замеры выполняются аналогично, но важно учесть, что измеренная величина сопротивления ЗУ включает сопротивление измерительного кабеля, подсоединенного к гнезду Т1.

Используемые приборы и средства

Сопротивление ЗУ замеряется специальными приборами – измерителями сопротивления заземления типа ИС-10, EurotestXE 2,5 кВ MI 3102H, М416, Ф4103-М1, MRU различных конфигураций и др. Дополнительно используются диэлектрические боты и перчатки, защитная каска и инструмент с изолирующими рукоятками.

В процессе проведения работ используется инструмент для забивания электродов в грунт на глубину не менее 0,5 м. Прибор подключается к корпусу электроустановки с помощью щупа, в роли которого применяется квадратный напильник с глухоприсоединенным медным проводом сечением 2,5 мм 2 .

Периодичность проведения замеров

Периодичность необходимых замеров сопротивления ЗУ основывается на правилах эксплуатации технических устройств. Для зданий действуют индивидуальные правила, включающие общие рекомендации по осмотру контура заземления. Периодичность замеров значится в специальных справочных материалах, используемых при реализации профилактических мероприятий. В большинстве случаев для поддержания работоспособности электросети достаточно осматривать участки заземления раз в полгода.

Замеры сопротивления переносного электрооборудования и дымовых труб должны проводиться ежегодно и включать обследование грунта возле заземленного электрооборудования. Сопротивление ЗУ в виде опор воздушных ЛЭП с напряжением до 1 кВт необходимо измерять с периодичностью раз в 6 лет, а с напряжением более 1 кВт – раз в 12 лет. Замеры сопротивления ЗУ нужно проводить во время максимальной засухи или замерзания грунта.

Инженерный центр «ПрофЭнергия» имеет огромный опыт и высокоточное оборудование, позволяющее оперативно измерять сопротивление заземляющих устройств и проводить другие электротехнические работы.

Инженерный центр “ПрофЭнергия” имеет все необходимые лицензии для измерения сопротивления заземляющих устройств, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Если Вы хотите заказать замер сопротивления заземления, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34 .

Читайте далее:
Ссылка на основную публикацию
Adblock
detector